This research presents a study of the free vibration of thin, shallow elliptical shells. The equations of motion for the elliptical shell, which are developed from Love's equations, are coupled and nonlinear. In this research, a new approach is introduced to uncouple the transverse motion of the shallow elliptical shell from the surface coordinates. Through the substitution of the strain-compatibility equation into the differential equations of motion in terms of strain, an explicit relationship between the curvilinear surface strains and transverse strain is determined. This latter relationship is then utilized to uncouple the spatial differential equation for transverse motion from that of the surface coordinates. The approach introduced provides a more explicit relationship between the surface and transverse coordinates than could be obtained through use of the Airy stress function. Angular and radial Mathieu equations are used to obtain solutions to the spatial differential equation of motion. Since the recursive relationships that are derived from the Mathieu equations lead to an infinite number of roots, not all of which are physically meaningful, the solution to the eigenvalue problem is used to determine the mode shapes and eigenfrequencies of the shallow elliptical shell. The results of examples demonstrate that the eigenfrequencies of the thin shallow elliptical shell are directly proportional to the curvature of the shell and inversely proportional to the shell's eccentricity.

References

References
1.
Leissa
,
A. W.
,
1969
,
Vibration of Plates
,
Ohio State University
,
Columbus, OH
.
2.
Soedel
,
W.
,
2005
,
Vibration of Shells and Plates
,
CRC Press
,
Boca Raton, FL
.
3.
Ventsel
,
E.
, and
Krauthammer
,
T.
,
2001
,
Thin Plates and Shells
,
Marcel Dekker
,
New York
.
4.
Kang
,
S. W.
, and
Lee
,
J. M.
,
2001
, “
Free Vibration Analysis of Arbitrarily Shaped Plates With Clamped Edges Using Wave-Type Functions
,”
J. Sound Vib.
,
242
(
1
), pp.
9
26
.
5.
Wah
,
T.
,
1963
, “
Large Amplitude Flexural Vibration of Rectangular Plates
,”
Int. J. Mech. Sci.
,
5
(
6
), pp.
425
438
.
6.
Wu
,
J. H.
,
Liu
,
A. Q.
, and
Chen
,
H. L.
,
2007
, “
Exact Solutions for Free-Vibration Analysis of Rectangular Plates Using Bessel Functions
,”
ASME J. Appl. Mech.
,
74
(
6
), pp.
1247
1251
.
7.
Han
,
W.
, and
Petyt
,
M.
,
1997
, “
Geometrically Nonlinear Vibration Analysis of Thin, Rectangular Plates Using the Hierarchical Finite Element Method—I: The Fundamental Mode of Isotropic Plates
,”
Comput. Struct.
,
63
(
2
), pp.
295
308
.
8.
Chen
,
J. T.
,
Chen
,
I. L.
,
Chen
,
K. H.
,
Lee
,
Y. T.
, and
Yeh
,
Y. T.
,
2004
, “
A Meshless Method for Free Vibration Analysis of Circular and Rectangular Clamped Plates Using Radial Basis Function
,”
Eng. Anal. Boundary Elem.
,
28
(
5
), pp.
535
545
.
9.
Kang
,
S. W.
,
Kim
,
I. S.
, and
Lee
,
J. M.
,
2008
, “
Free Vibration Analysis of Arbitrarily Shaped Plates With Smoothly Varying Free Edges Using NDIF Method
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041010
.
10.
Leissa
,
A. W.
,
1973
,
Vibration of Shells
,
Ohio State University
,
Columbus, OH
.
11.
Amabili
,
M.
,
2005
, “
Non-Linear Vibrations of Doubly Curved Shallow Shells
,”
Int. J. Non-Linear Mech.
,
40
(
5
), pp.
683
710
.
12.
Chakravorty
,
D.
, and
Bandyopadhyay
,
J. N.
,
1995
, “
On the Free Vibration of Shallow Shells
,”
J. Sound Vib.
,
185
(
4
), pp.
673
684
.
13.
Jiang
,
S.
,
Yang
,
T.
,
Li
,
W. L.
, and
Du
,
J.
,
2013
, “
Vibration Analysis of Doubly Curved Shallow Shells With Elastic Edge Restraints
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
034502
.
14.
Shin
,
D. K.
,
1997
, “
Large Amplitude Free Vibration Behavior of Doubly Curved Shallow Open Shells With Simply-Supported Edges
,”
Comput. Struct.
,
62
(
1
), pp.
35
49
.
15.
Leissa
,
A. W.
, and
Kadi
,
A. S.
,
1971
, “
Curvature Effects on Shallow Shell Vibration
,”
J. Sound Vib.
,
16
(
2
), pp.
173
187
.
16.
Thomas
,
O.
,
Touzé
,
C.
, and
Chaigne
,
A.
,
2005
, “
Non-Linear Vibrations of Free-Edge Thin Spherical Shells: Modal Interaction Rules and 1:1:2 Internal Resonance
,”
Int. J. Solids Struct.
,
42
(
11
), pp.
3339
3373
.
17.
Brischetto
,
S.
,
2013
, “
Exact Elasticity Solution for Natural Frequencies of Functionally Graded Simply-Supported Structures
,”
Comput. Model. Eng. Sci.
,
95
(
5
), pp.
391
430
.http://www.techscience.com/doi/10.3970/cmes.2013.095.391.html
18.
Moussaoui
,
F.
, and
Benamar
,
R.
,
2002
, “
Non-Linear Vibrations of Shell-Type Structures: A Review With Bibliography
,”
J. Sound Vib.
,
255
(
1
), pp.
161
184
.
19.
Tornabene
,
F.
,
Brischetto
,
S.
,
Fantuzzi
,
N.
, and
Viola
,
E.
,
2015
, “
Numerical and Exact Models for Free Vibration Analysis of Cylindrical and Spherical Shell Panels
,”
Composites, Part B
,
81
, pp.
231
250
.
20.
Choi
,
S. T.
, and
Chou
,
Y. T.
,
2003
, “
Vibration Analysis of Non-Circular Curved Panels by the Differential Quadrature Method
,”
J. Sound Vib.
,
259
(
3
), pp.
525
539
.
21.
Liew
,
K. M.
,
Peng
,
L. X.
, and
Ng
,
T. Y.
,
2002
, “
Three-Dimensional Vibration Analysis of Spherical Shell Panels Subjected to Different Boundary Conditions
,”
Int. J. Mech. Sci.
,
44
(
10
), pp.
2103
2117
.
22.
Shi
,
P.
,
Kapania
,
R. K.
, and
Dong
,
C. Y.
,
2015
, “
Free Vibration of Curvilinearly Stiffened Shallow Shells
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031006
.
23.
Pradyumna
,
S.
, and
Bandyopadhyay
,
J. N.
,
2008
, “
Free Vibration Analysis of Functionally Graded Curved Panels Using a Higher-Order Finite Element Formulation
,”
J. Sound Vib.
,
318
(
1
), pp.
176
192
.
24.
Chen
,
J. T.
,
Lee
,
J. W.
,
Lee
,
Y. T.
, and
Lee
,
W. S.
,
2014
, “
True and Spurious Eigensolutions of an Elliptical Membrane by Using the Nondimensional Dynamic Influence Function Method
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021018
.
25.
Mathieu
,
E.
,
1868
, “
Le Mouvement Vibratoire d'Une Membrane de Forme Elliptique
,”
J. Math. Pures Appl.
,
13
, pp.
137
203
.
26.
Gutiérrez-Vega
,
J. C.
,
2000
, “
Formal Analysis of the Propagation of Invariant Optical Fields in Elliptic Coordinates
,” Ph.D. thesis, National Institute of Astrophysics, Optics, and Electronics, Puebla, México.
27.
National Bureau of Standards
,
1951
,
Tables Relating to Mathieu Functions: Characteristic Values, Coefficients, and Joining Factors
, Columbia University Press, New York.
28.
Troesch
,
B. A.
, and
Troesch
,
H. R.
,
1973
, “
Eigenfrequencies of an Elliptic Membrane
,”
Math. Comput.
,
27
(
124
), pp.
755
765
.
29.
Gutiérrez-Vega
,
J. C.
,
Rodrıguez-Dagnino
,
R. M.
,
Meneses-Nava
,
M. A.
, and
Chávez-Cerda
,
S.
,
2003
, “
Mathieu Functions: A Visual Approach
,”
Am. J. Phys.
,
71
(
3
), pp.
233
242
.
30.
Sewall
,
J. L.
,
Thompson
,
W. M.
, Jr.
, and
Pusey
,
C. G.
,
1971
, “
An Experimental and Analytical Vibration Study of Elliptical Cylindrical Shells
,” National Aeronautics and Space Administration, Washington, DC, Report No.
TN-D-6089
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710007375.pdf
You do not currently have access to this content.