This paper presents an experimental study to find out an effective parameter which is useful to enhance the progression rate of drifting vibro-impact systems excited by a harmonic force. It is assumed that the system performance would be better if the excitation force stays in a harmonious relationship with the natural motion of the impact mass. This hypothesis has been numerically analyzed and then experimentally verified. The phase lag between the excitation force and the motion of the impact mass is used to identify the best situation, where the system progression rate is maximal. It has been found that the highest progression rate of the system can be obtained when the phase lag is around one-eighth of the excitation period.

References

References
1.
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
,
Woo
,
K.-C.
, and
Rodger
,
A. A.
,
2003
, “
Modelling of Ground Moling Dynamics by an Impact Oscillator With a Frictional Slider
,”
Meccanica
,
38
(
1
), pp.
85
97
.
2.
Nguyen
,
V. D.
,
Woo
,
K. C.
, and
Pavlovskaia
,
E.
,
2008
, “
Experimental Study and Mathematical Modelling of a New of Vibro-Impact Moling Device
,”
Int. J. Nonlinear Mech.
,
43
(
6
), pp.
542
550
.
3.
Franca
,
L. F. P.
, and
Weber
,
H. I.
,
2004
, “
Experimental and Numerical Study of Resonance Hammer Drilling Model With Drift
,”
Chaos Solitons Fractals
,
21
(
4
), pp.
789
801
.
4.
Wiercigroch
,
M.
,
Neilson
,
R. D.
, and
Player
,
M. A.
,
1999
, “
Material Removal Rate Prediction for Ultrasonic Drilling of Hard Materials Using an Impact Oscillator Approach
,”
Phys. Lett. A
,
259
(
2
), pp.
91
96
.
5.
Wiercigroch
,
M.
,
2006
, “
Applied Nonlinear Dynamics of Nonsmooth Mechanical Systems
,”
J. Braz. Soc. Mech. Sci. Eng.
,
28
(
4
), pp.
521
528
.
6.
Blazejczyk-Okolewska
,
B.
,
Czolczynski
,
K.
,
Kapitaniak
,
T.
, and
Wojewoda
,
J.
,
1999
,
Chaotic Mechanics in Systems With Friction and Impacts
(World Scientific Series on Nonlinear Science Series A), Vol.
36
, World Scientific Publishing, Singapore.
7.
Liu
,
Y.
,
Wiercigroch
,
M.
,
Pavlovskaia
,
E.
, and
Yu
,
H.
,
2013
, “
Modelling of a Vibro-Impact Capsule System
,”
Int. J. Mech. Sci.
,
66
, pp.
2
11
.
8.
Liu
,
L.
,
Towfighian
,
S.
, and
Hila
,
A.
,
2015
, “
A Review of Locomotion Systems for Capsule Endoscopy
,”
IEEE Rev. Biomed. Eng.
,
8
, pp.
138
152
.
9.
Pavlovkskaia
,
E.
,
Wiercigroch
,
M.
, and
Grebogi
,
C.
,
2001
, “
Modelling of an Impact System With a Drift
,”
Phys. Rev. E
,
64
(
5
), p.
056224
.
10.
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
,
2004
, “
Analytical Drift Reconstruction for an Impact System Operating in Periodic and Chaotic Regimes
,”
Chaos Solitons Fractals
,
19
(
1
), pp.
151
161
.
11.
Woo
,
K. C.
,
Rodger
,
A. A.
,
Neilson
,
R. D.
, and
Wiercigroch
,
M.
,
2006
, “
Phase Shift Adjustment for Harmonic Balance Method Applied to Vibro-Impact Systems
,”
Meccanica
,
41
(
3
), pp.
269
282
.
12.
Ajibose
,
O. K.
,
Wiercigroch
,
M.
,
Pavlovskaia
,
E.
, and
Akisanya
,
A. R.
,
2010
, “
Global and Local Dynamics of Drifting Oscillator for Different Contact Force Models
,”
Int. J. Nonlinear Mech.
,
45
(
9
), pp.
850
858
.
13.
Ajibose
,
O. K.
,
Wiercigroch
,
M.
,
Karolyi
,
G.
,
Pavlovskaia
,
E.
, and
Akisanya
,
A. R.
,
2012
, “
Drifting Impact Oscillator With a New Model of the Progression Phase
,”
ASME J. Appl. Mech.
,
79
(
6
), p.
061007
.
14.
Chávez
,
P. J.
,
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
,
2014
, “
Bifurcation Analysis of a Piecewise-Linear Impact Oscillator With Drift
,”
Nonlinear Dyn.
,
77
(
213
), pp.
213
227
.
15.
Chernous'ko
,
F. L.
,
2008
, “
The Optimal Periodic Motions of a Two Mass System in a Resistant Medium
,”
J. Appl. Math. Mech.
,
72
(
2
), pp.
116
125
.
16.
Li
,
H.
,
Furuta
,
K.
, and
Chernous'ko
,
F. L.
,
2006
, “
Motion Generation of the Capsubot Using Internal Force and Static Friction
,”
45th IEEE Conference on Decision and Control
(
CDC
), San Diego, CA, Dec. 13–15, pp.
6575
6580
.
17.
Su
,
G.
,
Zhang
,
C.
,
Tan
,
R.
, and
Li
,
H.
,
2009
, “
A Design of the Electromagnetic Driver for the ‘Internal Force-Static Friction’ Capsubot
,”
International Conference on Intelligent Robots and Systems
(
IROS
), St. Louis, MO, Oct. 10–15, pp. 613-617.
18.
Nguyen
,
V. D.
, and
Woo
,
K. C.
,
2008
, “
New Electro-Vibroimpact System
,”
J. Mech. Eng. Sci.
,
222
(
4
), pp.
629
642
.
19.
Nguyen
,
V. D.
, and
Woo
,
K. C.
,
2008
, “
Nonlinear Dynamic Responses of New Electro-Vibroimpact System
,”
J. Sound Vib.
,
310
(
4–5
), pp.
769
775
.
20.
Ho
,
J. H.
,
Nguyen
,
V. D.
, and
Woo
,
K. C.
,
2011
, “
Nonlinear Dynamics of a New Electro-Vibroimpact System
,”
Nonlinear Dyn.
,
63
(
1–2
), pp.
35
49
.
21.
Liu
,
Y.
,
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
,
2016
, “
Experimental Verification of the Vibro-Impact Capsule Model
,”
Nonlinear Dyn.
,
83
(
1
), pp.
1029
1041
.
22.
Liu
,
Y.
,
Islam
,
S.
,
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
,
2016
, “
Optimization of the Vibro-Impact Capsule System
,”
Strojniški Vestnik: J. Mech. Eng.
,
62
(
7–8
), pp.
430
439
23.
Czołczynski
,
K.
, and
Kapitaniak
,
T.
,
2003
, “
Influence Of the Mass and Stiffness Ratio on a Periodic Motion of Two Impacting Oscillators
,”
Chaos, Solitons Fractals
,
17
(
1
), pp.
1
10
.
24.
Nguyen
,
V. D.
,
Duong
,
T. H.
,
Chu
,
N. H.
, and
Ngo
,
Q. H.
,
2017
, “
The Effect of Inertial Mass and Excitation Frequency on a Duffing Vibro-Impact Drifting System
,”
Int. J. Mech. Sci.
,
124–125
, pp.
9
21
.
25.
Nguyen
,
V. D.
,
Nguyen
,
H. C.
,
Ngo
,
N. K.
, and
La
,
N. T.
,
2017
, “
A New Design of Horizontal Electro-Vibroimpact Devices
,”
ASME J. Comput. Nonlinear Dyn.
, epub.
26.
Paul
,
G. M.
, 2004,
Design of Experiments With Minitab
,
ASQ Quality Press
, Milwaukee, WI.
You do not currently have access to this content.