Most of the technological developments achieved in the turbomachinery field during the last years have been obtained through the introduction of fluid dynamic bearings, in particular tilting pad journal bearings (TPJBs). However, even those bearings can be affected by thermal instability phenomena as the Morton effect at high peripheral speeds. In this work, the authors propose a new iterative finite element method (FEM) approach for the analysis of those thermal–structural phenomena: the proposed model, based on the coupling between the rotor dynamic and the thermal behavior of the system, is able to accurately reproduce the onset of thermal instabilities. The authors developed two versions of the model, one in the frequency domain and the other in the time domain; both models are able to assure a good tradeoff between numerical efficiency and accuracy. The computational efficiency is critical when dealing with the typical long times of thermal instability. The research activity has been carried out in cooperation with General Electric Nuovo Pignone SPA, which provided both the technical and experimental data needed for the model development and validation.

References

References
1.
Waukesha Bearings
, 2016, “
Tilting Pad Journal Bearing
,” Waukesha Bearings, Pewaukee, WI, accessed June 30, 2017, http://www.waukbearing.com/en/engineered-fluid-film/product-lines/journal-bearings/tilt-pad-journal-bearings/
2.
Nicholas
,
J. C.
,
1994
, “
Tilting Pad Bearing Design
,”
23rd Turbomachinery Symposium
, Dallas, TX, Sept. 13–15, pp.
179
194
.http://turbolab.tamu.edu/proc/turboproc/T23/T23179-194.pdf
3.
Monmousseau
,
P.
,
Fillon
,
M.
, and
Frene
,
J.
,
1998
, “
Transient Thermoelastohydrodynamic Study of Tilting-Pad Journal Bearings Under Dynamic Loading
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
405
409
.
4.
Monmousseau
,
P.
, and
Fillon
,
M.
,
1999
, “
Frequency Effects on the TEHD Behavior of a Tilting-Pad Journal Bearing Under Dynamic Loading
,”
ASME J. Tribol.
,
121
(
2
), pp.
321
326
.
5.
Monmousseau
,
P.
,
Fillon
,
M.
, and
Frene
,
J.
,
1998
, “
Transient Thermoelastohydrodynamic Study of Tilting-Pad Journal Bearings—Application to Bearing Seizure
,”
ASME J. Tribol.
,
120
(
2
), pp.
319
324
.
6.
Abu-Mahfouz
,
I.
, and
Adams
,
M. L.
,
2005
, “
Numerical Study of Some Nonlinear Dynamics of a Rotor Supported on a Three-Pad Tilting Pad Journal Bearing
,”
ASME J. Vib. Acoust.
,
127
(
3
), pp.
262
272
.
7.
Dimarogonas
,
A. D.
,
1973
, “
Newkirk Effect: Thermally Induced Dynamic Instability of High-Speed Rotors
,”
ASME
Paper No. 73-GT-26.
8.
Kellenberger
,
W.
,
1980
, “
Spiral Vibrations Due to Seal Rings in Turbogenerators. Thermally Induced Interaction Between Rotor and Stator
,”
ASME J. Mech. Des.
,
102
(
1
), pp.
177
184
.
9.
Newkirk
,
B. L.
,
1926
, “
Shaft Rubbing
,”
Mech. Eng.
,
48
, pp.
830
832
.
10.
De Jongh
,
F. M.
, and
Morton
,
P. G.
,
1994
, “
The Synchronous Instability of a Compressor Rotor Due to Bearing Journal Differential Heating
,”
ASME
Paper No. 94-GT-035.
11.
Guo
,
Z.
, and
Kirk
,
G.
,
2011
, “
Morton Effect Induced Synchronous Instability in Mid-Span Rotor-Bearing Systems—Part 2: Models and Simulations
,”
ASME J. Vib. Acoust.
,
133
(
6
), p.
061006
.
12.
Guo
,
Z.
, and
Kirk
,
G.
,
2011
, “
Morton Effect Induced Synchronous Instability in Mid-Span Rotor-Bearing Systems—Part I: Mechanism Study
,”
ASME J. Vib. Acoust.
,
133
(
6
), p.
061004
.
13.
Murphy
,
B. T.
, and
Lorenz
,
J. A.
,
2010
, “
Simplified Morton Effect Analysis for Synchronous Spiral Instability
,”
ASME J. Vib. Acoust.
,
132
(
5
), p.
051008
.
14.
Keogh
,
P. S.
, and
Morton
,
P. G.
,
1993
, “
Journal Bearing Differential Heating Evaluation With Influence on the Rotor Dynamic Behavior
,”
Proc. R. Soc. London
,
441
(
1913
), pp.
527
548
.
15.
Childs
,
D. W.
, and
Saha
,
R.
,
2012
, “
A New, Iterative, Synchronous-Response Algorithm for Analyzing the Morton Effect
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
072501
.
16.
Gomiciaga
,
R.
, and
Keogh
,
P. S.
,
1999
, “
Orbit Induced Journal Temperature Variation in Hydrodynamic Bearings
,”
ASME J. Tribol.
,
121
(
1
), pp.
77
84
.
17.
Grigorev
,
B. S.
,
Fedorov
,
A. E.
, and
Schmied
,
J.
,
2015
, “
New Mathematical Model for the Morton Effect Based on the THD Analysis
,”
IFToMM International Conference on Rotor Dynamics 2014 Congress
, Springer, Cham, Switzerland, pp. 2243–2253.
18.
Kim
,
J.
,
Palazzolo
,
A.
, and
Gadangi
,
R.
,
1995
, “
Dynamic Characteristics of TEHD Tilt Pad Journal Bearing Simulation Including Multiple Mode Pad Flexibility Model
,”
ASME J. Vib. Acoust.
,
117
(
1
), pp.
123
135
.
19.
Varela
,
A. C.
,
Fillon
,
M.
, and
Santos
,
I. F.
,
2012
, “
On the Simplifications for the Thermal Modelling of Tilting-Pad Journal Bearings Under Thermoelastohydrodynamic Regime
,”
ASME
Paper No. GT2012-68329.
20.
Monmousseau
,
P.
,
Fillon
,
M.
, and
Frene
,
J.
,
1997
, “
Transient Thermoelastohydrodynamic Study of Tilting-Pad Journal Bearings—Comparison Between Experimental Data and Theoretical Results
,”
ASME J. Tribol.
,
119
(
3
), pp.
401
407
.
21.
Fillon
,
M.
,
Bligoud
,
J. C.
, and
Frene
,
J.
,
1992
, “
Experimental Study of Tilting-Pad Journal Bearings—Comparison With Theoretical Thermoelastohydrodynamic Results
,”
ASME J. Tribol.
,
114
(
3
), pp.
579
588
.
22.
Lund
,
J. W.
,
1964
, “
Spring and Damping Coefficients for the Tilting-Pad Journal Bearing
,”
ASLE Trans.
,
7
(
4
), pp.
342
352
.
23.
Conti
,
R.
,
Frilli
,
A.
,
Galardi
,
E.
,
Meli
,
E.
,
Nocciolini
,
D.
,
Pugi
,
L.
,
Rindi
,
A.
, and
Rossin
,
S.
,
2015
, “
An Efficient Quasi-Three-Dimensional Model of Tilting Pad Journal Bearing for Turbomachinery Applications
,”
ASME J. Vib. Acoust.
,
137
(
6
), p.
061013
.
24.
Rindi
,
A.
,
Rossin
,
S.
,
Conti
,
R.
,
Frilli
,
A.
,
Galardi
,
E.
,
Meli
,
E.
,
Nocciolini
,
D.
, and
Pugi
,
L.
,
2016
, “
Efficient Models of Three-Dimensional Tilting Pad Journal Bearings for the Study of the Interactions Between Rotor and Lubricant Supply Plant
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
1
), p.
011011
.
25.
Suh
,
J.
, and
Palazzolo
,
A.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing—Part I: Theoretical Modeling
,”
ASME J. Tribol.
,
137
(
4
), p.
041703
.
26.
Suh
,
J.
, and
Palazzolo
,
A.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing—Part II: Parametric Studies
,”
ASME J. Tribol.
,
137
(
4
), p.
041704
.
27.
Tong
,
X.
,
Palazzolo
,
A.
, and
Suh
,
J.
,
2016
, “
Rotordynamic Morton Effect Simulation With Transient, Thermal Shaft Bow
,”
ASME J. Tribol.
,
138
(
3
), p.
031705
.
28.
Tong
,
X.
, and
Palazzolo
,
A.
,
2016
, “
Double Overhung Disk and Parameter Effect on Rotordynamic Synchronous Instability—Morton Effect—Part I: Theory and Modeling Approach
,”
ASME J. Tribol.
,
139
(
1
), p.
011705
.
29.
Tong
,
X.
, and
Palazzolo
,
A.
,
2016
, “
Double Overhung Disk and Parameter Effect on Rotordynamic Synchronous Instability—Morton Effect—Part II: Occurrence and Prevention
,”
ASME J. Tribol.
,
139
(
1
), p.
011706
.
30.
Baldassarre
,
L.
,
Panara
,
D.
,
Panconi
,
S.
,
Meli
,
E.
,
Griffini
,
D.
, and
Mattana
,
A.
,
2015
, “
Numerical Prediction and Experimental Validation of Rotor Thermal Instability
,”
44th Turbomachinery Symposium
, Houston, TX, Sept. 14–17.http://turbolab.tamu.edu/proc/turboproc/T44/L10.pdf
31.
De Jongh
,
F. M.
, and
Van Der Hoeven
,
P.
,
1998
, “
Application of a Heat Barrier Sleeve to Prevent Synchronous Rotor Instability
,”
27th Turbomachinery Symposium
, Houston, TX, Sept. 20–24.http://turbolab.tamu.edu/proc/turboproc/T27/Vol27003.pdf
32.
Rieger
,
N. F.
, and
Crofoot
,
J. F.
,
1977
, “
Vibrations of Rotating Machinery—Part I: Rotor-Bearing Dynamics
,” The Vibration Institute, Clarendon Hills, IL.
33.
Al-Ghasem
,
A. M.
, and
Childs
,
D. W.
,
2005
, “
Rotordynamic Coefficients Measurements Versus Predictions for a High-Speed Flexure-Pivot Tilting-Pad Bearing (Load-Between-Pad Configuration)
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
896
906
.
34.
Genta
,
G.
,
1993
,
Vibration of Structures and Machines—Practical Aspects
,
Springer-Verlag
,
New York
.
35.
Friswell
,
M. I.
,
Penny
,
J. E. T.
,
Garvey
,
S. D.
, and
Lees
,
A. W.
,
2010
,
Dynamics of Rotating Machines
,
Cambridge University Press
,
Cambridge, UK
.
36.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
37.
Schmied
,
J. S.
,
Pozivil
,
J.
, and
Walch
,
J.
,
2008
, “
Hot Spots in Turboexpander Bearings: Case History, Stability Analysis, Measurements and Operational Experience
,”
ASME
Paper No. GT2008-51179.
38.
Kirk
,
R. G.
, and
Balbahadur
,
A. C.
,
2000
, “
Thermal Distortion Synchronous Rotor Instability
,”
Seventh International Conference on Vibrations in Rotating Machinery
, Nottingham, UK, Sept. 12–14, pp. 427–438.
39.
Zhu
,
Y. Y.
, and
Cescotto
,
S.
,
1994
, “
Transient Thermal and Thermomechanical Analysis by Mixed FEM
,”
Comput. Struct.
,
53
(
2
), pp.
275
304
.
40.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge, UK
.
41.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
42.
API
,
2005
, “
Rotordynamic Tutorial: Lateral Critical Speeds, Unbalance Response, Stability, Train Torsionals, and Rotor Balancing
,” American Petroleum Institute, Washington, DC,
2nd ed.
, Standard No.
API STD 684
.https://dyrobes.com/wp-content/uploads/2015/09/Using-Rotordynamics_linked.pdf
You do not currently have access to this content.