In this paper, new exact closed-form solutions for free longitudinal vibration of a one-parameter countable family of cantilever rods with one end tip mass are obtained. The analysis is based on the reduction of the equation governing the longitudinal vibration to the Sturm–Liouville canonical form and on the use of double Darboux transformations. The rods for which exact eigensolutions are provided are explicitly determined in terms of an initial rod with known closed-form eigensolutions. The method can be also extended to include longitudinally vibrating rods with tip mass at both ends.

References

References
1.
Elishakoff
,
I.
,
2005
,
Eigenvalues of Inhomogeneous Structures: Unusual Closed-Form Solutions
,
CRC Press
,
Boca Raton, FL
.
2.
Abrate
,
S.
,
1995
, “
Vibration of Non-Uniform Rods and Beams
,”
J. Sound Vib.
,
185
(
4
), pp.
703
714
.
3.
Kumar
,
B. M.
, and
Sujith
,
R. I.
,
1997
, “
Exact Solutions for the Longitudinal Vibration of Non-Uniform Rods
,”
J. Sound Vib.
,
207
(
5
), pp.
721
729
.
4.
Raj
,
A.
, and
Sujith
,
R. I.
,
2005
, “
Closed-Form Solutions for the Free Longitudinal Vibration of Inhomogeneous Rods
,”
J. Sound Vib.
,
283
(3–5), pp.
1015
1030
.
5.
Yardimoglu
,
B.
, and
Aydin
,
L.
,
2011
, “
Exact Longitudinal Vibration Characteristics of Rods With Variable Cross-Sections
,”
Shock Vib.
,
18
(
4
), pp.
555
562
.
6.
Li
,
Q. S.
,
2000
, “
Exact Solutions for Free Longitudinal Vibration of Stepped Non-Uniform Rods
,”
Appl. Acoust.
,
60
(
1
), pp.
13
28
.
7.
Loya
,
J. A.
,
Aranda-Ruiz
,
J.
, and
Fernández-Sáez
,
J.
,
2014
, “
Torsion of Cracked Nanorods Using a Nonlocal Elasticity Model
,”
J. Phys. D: Appl. Phys.
,
47
(
11
), p.
115304
.
8.
Elishakoff
,
I.
, and
Perez
,
A.
,
2005
, “
Design of a Polynomially Inhomogeneous Bar With a Tip Mass for Specified Mode Shape and Natural Frequency
,”
J. Sound Vib.
,
287
(4–5), pp.
1004
1012
.
9.
Li
,
Q. S.
,
2000
, “
Exact Solutions for Free Longitudinal Vibrations of Non-Uniform Rods
,”
J. Sound Vib.
,
234
(
1
), pp.
1
19
.
10.
Darboux
,
G.
,
1888
, “
Sur la Répresentation Sphérique des Surfaces
,”
Ann. Sci. Éc. Norm. Supér.
,
5
, pp.
79
86
.
11.
Gladwell
,
G. M. L.
, and
Morassi
,
A.
,
1995
, “
On Isospectral Rods, Horns and Strings
,”
Inverse Probl.
,
11
(
3
), pp.
533
554
.
12.
Pöschel
,
J.
, and
Trubowitz
,
E.
,
1987
,
Inverse Spectral Theory
,
Academic Press
,
London, UK
.
You do not currently have access to this content.