This paper presents a study of multi-objective optimization of elastic beams with minimum weight and radiated sound power. The goal of this research is to discover the potentials to design multi-objective optimal elastic structures for better acoustic performance. We discuss various structural-acoustic properties of the Pareto solutions of the multi-objective optimization problem (MOP). We have found that geometrical and dynamic constraints can substantially reduce the volume fraction of feasible solutions in the design space, which can make it difficult to search for the optimal solutions. Several case studies with different boundary conditions are studied to demonstrate the multi-objective optimal designs of the structure.
Issue Section:
Research Papers
References
1.
Koopmann
, G. H.
, and Fahnline
, J. B.
, 1997
, Designing Quiet Structures: A Sound Power Minimization Approach
, Academic Press
, London.2.
Marburg
, S.
, 2002
, “Developments in Structural-Acoustic Optimization for Passive Noise Control
,” Arch. Comput. Methods Eng.
, 9
(4
), pp. 291
–370
.3.
Adali
, S.
, 1983
, “Pareto Optimal Design of Beams Subjected to Support Motions
,” Comput. Struct.
, 16
(1
), pp. 297
–303
.4.
Eschenauer
, H.
, Kneppe
, G.
, and Stenvers
, K. H.
, 1986
, “Deterministic and Stochastic Multiobjective Optimization of Beam and Shell Structures
,” J. Mech. Transm. Autom. Des.
, 108
(1
), pp. 31
–37
.5.
Denli
, H.
, and Sun
, J. Q.
, 2007
, “Optimization of Boundary Supports for Sound Radiation Reduction of Vibrating Structures
,” ASME J. Vib. Acoust.
, 130
(1
), p. 011007
.6.
Purekar
, A. S.
, and Pines
, D. J.
, 2000
, “Detecting Damage in Non-Uniform Beams Using the Dereverberated Transfer Function Response
,” Smart Mater. Struct.
, 9
(4
), p. 429
.7.
Joshi
, P.
, Mulani
, S. B.
, and Kapania
, R. K.
, 2015
, “Multi-Objective Vibro-Acoustic Optimization of Stiffened Panels
,” Struct. Multidiscip. Optim.
, 51
(4
), pp. 835
–848
.8.
Kodiyalam
, S.
, Adali
, S.
, and Sadek
, I. S.
, 1992
, “Multiobjective Design Optimization of Continuous Beams by Numerical Methods
,” Eng. Comput.
, 9
(5
), pp. 539
–546
.9.
Au
, F. T. K.
, Zheng
, D. Y.
, and Cheung
, Y. K.
, 1999
, “Vibration and Stability of Non-Uniform Beams With Abrupt Changes of Cross-Section by Using C1 Modified Beam Vibration Functions
,” Appl. Math. Modell.
, 23
(1
), pp. 19
–34
.10.
Lee
, S. Y.
, and Hsiao
, J. Y.
, 2002
, “Free In-Plane Vibrations of Curved Nonuniform Beams
,” Acta Mech.
, 155
(3
), pp. 173
–189
.11.
Marburg
, S.
, Dienerowitz
, F.
, Fritze
, D.
, and Hardtke
, H.-J.
, 2006
, “Case Studies on Structural-Acoustic Optimization of a Finite Beam
,” Acta Acust. Acust.
, 92
(3
), pp. 427
–439
.https://www.researchgate.net/publication/233524811_Case_Studies_on_Structural-Acoustic_Optimization_of_a_Finite_Beam12.
Chen
, L.-Y.
, and Wang
, D.-Y.
, 2008
, “Structural-Acoustic Optimization of Stiffened Panels Based on a Genetic Algorithm
,” J. Mar. Sci. Appl.
, 6
(4
), pp. 55
–61
.13.
Sun
, J. Q.
, 1995
, “Vibration and Sound Radiation of Non-Uniform Beams
,” J. Sound Vib.
, 185
(5
), pp. 827
–843
.14.
Ho
, S. H.
, and Chen
, C. K.
, 1998
, “Analysis of General Elastically End Restrained Non-Uniform Beams Using Differential Transform
,” Appl. Math. Modell.
, 22
(4–5
), pp. 219
–234
.15.
Fliege
, J.
, and Svaiter
, F. B.
, 2000
, “Steepest Descent Methods for Multicriteria Optimization
,” Math. Methods Oper. Res.
, 51
(3
), pp. 479
–494
.16.
Custódio
, A. L.
, Madeira
, J. F. A.
, Vaz
, A. I. F.
, and Vicente
, L. N.
, 2011
, “Direct Multisearch for Multiobjective Optimization
,” SIAM J. Optim.
, 21
(3
), pp. 1109
–1140
.17.
Ringkamp
, M.
, Ober-Blöbaum
, S.
, Dellnitz
, M.
, and Schütze
, O.
, 2012
, “Handling High-Dimensional Problems With Multi-Objective Continuation Methods Via Successive Approximation of the Tangent Space
,” Eng. Optim.
, 44
(9
), pp. 1117
–1146
.18.
Schütze
, O.
, Mostaghim
, S.
, Dellnitz
, M.
, and Teich
, J.
, 2003
, “Covering Pareto Sets by Multilevel Evolutionary Subdivision Techniques
,” Second International Conference on Evolutionary Multi-Criterion Optimization
(EMO
), Faro, Portugal, Apr. 8–11, pp. 118
–132
.19.
Hernández
, C.
, Naranjani
, Y.
, Sardahi
, Y.
, Liang
, W.
, Schütze
, O.
, and Sun
, J.-Q.
, 2013
, “Simple Cell Mapping Method for Multi-Objective Optimal Feedback Control Design
,” Int. J. Dyn. Control
, 1
(3
), pp. 231
–238
.20.
Naranjani
, Y.
, Hernández
, C.
, Xiong
, F.-R.
, Schütze
, O.
, and Sun
, J.-Q.
, 2013
, “A Hybrid Algorithm for the Simple Cell Mapping Method in Multi-Objective Optimization
,” EVOLVE—A Bridge Between Probability, Set Oriented Numerics, and Evolutionary Computation IV
, M.
Emmerich
, A. Deutz, O. Schuetze, Th. Bäck, E. Tantar, A. A. Tantar, P. Del Moral, P. Legrand, P. Bouvry, and C. A. Coello Coello, eds., Springer International Publishing
, Berlin
, pp. 207
–223
.21.
Deb
, K.
, Pratap
, A.
, Agarwal
, S.
, and Meyarivan
, T.
, 2002
, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,” IEEE Trans. Evol. Comput.
, 6
(2
), pp. 182
–197
.22.
Coello
, C. A. C.
, Pulido
, G. T.
, and Lechuga
, M. S.
, 2004
, “Handling Multiple Objectives With Particle Swarm Optimization
,” IEEE Trans. Evol. Comput.
, 8
(3
), pp. 256
–279
.23.
Amuso
, V. J.
, and Enslin
, J.
, 2007
, “The Strength Pareto Evolutionary Algorithm 2 (SPEA2) Applied to Simultaneous Multi-Mission Waveform Design
,” International Waveform Diversity and Design Conference (WDDC
), Pisa, Italy, June 4–8, pp. 407
–417
.24.
Naranjani
, Y.
, Hernández
, C.
, Xiong
, F.-R.
, Schütze
, O.
, and Sun
, J.-Q.
, 2016
, “A Hybrid Method of Evolutionary Algorithm and Simple Cell Mapping for Multi-Objective Optimization Problems
,” Int. J. Dyn. Control
, epub.25.
Coello
, C. A. C.
, and Lechuga
, M. S.
, 2002
, “MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization
,” Congress on Evolutionary Computation (CEC
), Honolulu, HI, May 12–17, Vol. 2
, pp. 1051
–1056
.26.
Poli
, R.
, Kennedy
, J.
, and Blackwell
, T.
, 2007
, “Particle Swarm Optimization
,” Swarm Intell.
, 1
(1
), pp. 33
–57
.27.
Coello
, C. A. C.
, Lamont
, G. B.
, and van Veldhuizen
, D. A.
, 2007
, Evolutionary Algorithms for Solving Multi-Objective Problems
, Springer
, New York
.28.
Hsu
, C. S.
, 1985
, “A Discrete Method of Optimal Control Based Upon the Cell State Space Concept
,” J. Optim. Theory Appl.
, 46
(4
), pp. 547
–569
.29.
Han
, S. M.
, Benaroya
, H.
, and Wei
, T.
, 1999
, “Dynamics of Transversely Vibrating Beams Using Four Engineering Theories
,” J. Sound Vib.
, 225
(5
), pp. 935
–988
.30.
Majkut
, L.
, 2009
, “Free and Forced Vibrations of Timoshenko Beams Described by Single Difference Equation
,” J. Theor. Appl. Mech.
, 47
(1
), pp. 193
–201
.http://www.warminski.pollub.plwww.ptmts.org.pl/Majkut-1-09.pdf31.
Lamancusa
, J.
, 1993
, “Numerical Optimization Techniques for Structural-Acoustic Design of Rectangular Panels
,” Comput. Struct.
, 48
(4
), pp. 661
–675
.32.
Klaerner
, M.
, Wuehrl
, M.
, Kroll
, L.
, and Marburg
, S.
, 2017
, “FEA-Based Methods for Optimising Structure-Borne Sound Radiation
,” Mech. Syst. Signal Process.
, 89
, pp. 37
–47
.33.
Bathe
, K. J.
, 1995
, Finite Element Procedures
, Prentice Hall
, Upper Saddle River, NJ.Copyright © 2017 by ASME
You do not currently have access to this content.