The finite element (FE) method offers an efficient framework to investigate the evolution of phononic crystals which possess materials or geometric nonlinearity subject to external loading. Despite its superior efficiency, the FE method suffers from spectral distortions in the dispersion analysis of waves perpendicular to the layers in infinitely periodic multilayered composites. In this study, the analytical dispersion relation for sagittal elastic waves is reformulated in a substantially concise form, and it is employed to reproduce spatial aliasing-induced spectral distortions in FE dispersion relations. Furthermore, through an anti-aliasing condition and the effective elastic modulus theory, an FE modeling general guideline is provided to overcome the observed spectral distortions in FE dispersion relations of infinitely periodic multilayered composites, and its validity is also demonstrated.

References

1.
Saini
,
G.
,
Pezeril
,
T.
,
Torchinsky
,
D. H.
,
Yoon
,
J.
,
Kooi
,
S. E.
,
Thomas
,
E. L.
, and
Nelson
,
K. A.
,
2007
, “
Pulsed Laser Characterization of Multicomponent Polymer Acoustic and Mechanical Properties in the Sub-GHZ Regime
,”
J. Mater. Res.
,
22
(
3
), pp.
719
723
.
2.
Liang
,
B.
,
Guo
,
X. S.
,
Tu
,
J.
,
Zhang
,
D.
, and
Cheng
,
J. C.
,
2010
, “
An Acoustic Rectifier
,”
Nat. Mater.
,
9
(
12
), pp.
989
992
.
3.
Wang
,
Y.
,
Song
,
W.
,
Sun
,
E.
,
Zhang
,
R.
, and
Cao
,
W.
,
2014
, “
Tunable Passband in One-Dimensional Phononic Crystal Containing a Piezoelectric 0.62Pb(Mg1∕3Nb2∕3)O3–0.38PbTiO3 Single Crystal Defect Layer
,”
Physica E
,
60
, pp.
37
41
.
4.
Cheng
,
W.
,
Gomopoulos
,
N.
,
Fytas
,
G.
,
Gorishnyy
,
T.
,
Walish
,
J.
,
Thomas
,
E. L.
,
Hiltner
,
A.
, and
Baer
,
E.
,
2008
, “
Phonon Dispersion and Nanomechanical Properties of Periodic 1d Multilayer Polymer Films
,”
Nano Lett.
,
8
(
5
), pp.
1423
1428
.
5.
Nemat-Nasser
,
S.
,
Sadeghia
,
H.
,
Amirkhizib
,
A. V.
, and
Srivastavac
,
A.
,
2015
, “
Phononic Layered Composites for Stress-Wave Attenuation
,”
Mech. Res. Commun.
,
68
, pp.
65
69
.
6.
Ma
,
C.
,
Parker
,
R. G.
, and
Yellen
,
B. B.
,
2013
, “
Optimization of an Acoustic Rectifier for Uni-Directional Wave Propagation in Periodic Mass-Spring Lattices
,”
J. Sound Vib.
,
332
(
20
), pp.
4876
4894
.
7.
Nemat-Nasser
,
S.
, and
Srivastava
,
A.
,
2011
, “
Negative Effective Dynamic Mass-Density and Stiffness: Micro-Architecture and Phononic Transport in Periodic Composites
,”
AIP Adv.
,
1
(
4
), p.
041502
.
8.
Zhu
,
R.
,
Huang
,
G. L.
, and
Hu
,
G. K.
,
2012
, “
Effective Dynamic Properties and Multi-Resonant Design of Acoustic Metamaterials
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031006
.
9.
Rytov
,
S. M.
,
1956
, “
Acoustical Properties of a Thinly Laminated Medium
,”
Sov. Phys. Acoust.
,
2
(
1
), pp.
68
80
.
10.
Sun
,
C. T.
,
Achenbach
,
J. D.
, and
Herrmann
,
G.
,
1968
, “
Time-Harmonic Waves in a Stratified Medium Propagating in the Direction of the Layering
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
408
411
.
11.
Achenbach
,
J. D.
,
1968
, “
Wave Propagation in Lamellar Composite Materials
,”
J. Acoust. Soc. Am.
,
43
(
6
), pp.
1451
1452
.
12.
Lee
,
E. H.
, and
Yang
,
H. W.
,
1973
, “
On Waves in Composite Materials With Periodic Structure
,”
Soc. Ind. Appl. Math.
,
25
(
3
), pp.
492
499
.
13.
Brekhovskikh
,
L. M.
,
1980
, “
Waves in Layered Media
,” 2nd ed.,
Applied Mathematics and Mechanics
, Vol.
16
,
Academic Press
,
New York
.
14.
He
,
J. J.
,
Djafarirouhani
,
B.
, and
Sapriel
,
J.
,
1988
, “
Theory of Light Scattering by Longitudinal-Acoustic Phonons in Superlattices
,”
Phys. Rev. B
,
37
(
8
), pp.
4086
4098
.
15.
Tamura
,
S.
, and
Wolfe
,
J. P.
,
1988
, “
Acoustic Phonons in Multiconstituent Superlattices
,”
Phys. Rev. B
,
38
(
8
), pp.
5610
5614
.
16.
Esquivel-Sirvent
,
R.
, and
Cocoletzi
,
G. H.
,
1994
, “
Band Structure for the Propagation of Elastic Waves in Superlattices
,”
J. Acoust. Soc. Am.
,
95
(
1
), pp.
86
90
.
17.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2006
, “
Dispersive Elastodynamics of 1d Banded Materials and Structures: Analysis
,”
J. Sound Vib.
,
289
(
4–5
), pp.
779
806
.
18.
Rouhani
,
B. D.
,
Dobrzynski
,
L.
,
Duparc
,
O.
,
Camley
,
R.
, and
Maradudin
,
A.
,
1983
, “
Sagittal Elastic Waves in Infinite and Semi-Infinite Superlattices
,”
Phys. Rev. B
,
28
(
4
), pp.
1711
1720
.
19.
Nougaoui
,
A.
, and
Rouhani
,
B. D.
,
1987
, “
Elastic Waves in Periodically Layered Infinite and Semi-Infinite Anisotropic Media
,”
Surf. Sci.
,
185
(
1–2
), pp.
125
153
.
20.
Nougaoui
,
A.
, and
Rouhani
,
B. D.
,
1988
, “
Complex Band Structure of Acoustic Waves in Superlattices
,”
Surf. Sci.
,
199
(
3
), pp.
623
637
.
21.
Sapriel
,
J.
, and
Rouhani
,
B. D.
,
1989
, “
Vibrations in Superlattice
s,”
Surf. Sci. Rep.
,
10
(
4–5
), pp.
189
275
.
22.
Nayfeh
,
A. H.
,
1991
, “
The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media
,”
J. Acoust. Soc. Am.
,
89
(
4
), pp.
1521
1531
.
23.
Braga
,
A. M. B.
, and
Herrmann
,
G.
,
1992
, “
Floquet Waves in Anisotropic Periodically Layered Composites
,”
J. Acoust. Soc. Am.
,
91
(
3
), pp.
1211
1227
.
24.
Hegemier
,
G. A.
, and
Nayfeh
,
A. H.
,
1973
, “
A Continuum Theory for Wave Propagation in Laminated Composites—Case 1: Propagation Normal to Laminates
,”
ASME J. Appl. Mech.
,
40
(
2
), pp.
503
510
.
25.
Hegemier
,
G. A.
, and
Bache
,
T. C.
,
1974
, “
A General Continuum Theory With Microstructure for Wave Propagation in Elastic Laminated Composites
,”
ASME J. Appl. Mech.
,
41
(
1
), pp.
101
105
.
26.
Herrmann
,
G.
, and
Achenbach
,
J.
,
1967
, “
On Dynamic Theories of Fiber-Reinforced Composites
,”
Eighth Structural Dynamics and Materials Conference
, Palm Springs, CA, Mar. 29–31, pp. 112–118.
27.
Sun
,
C. T.
,
Achenbach
,
J. D.
, and
Herrmann
,
G.
,
1968
, “
Continuum Theory for a Laminated Medium
,”
ASME J. Appl. Mech.
,
35
(
3
), pp.
467
475
.
28.
Murakami
,
H.
,
Maewal
,
A.
, and
Hegemier
,
G. A.
,
1979
, “
Mixture Theory for Longitudinal Wave Propagation in Unidirectional Composites With Cylindrical Fibers of Arbitrary Cross Section—I: Formulation
,”
Int. J. Solids Struct.
,
15
(
4
), pp.
325
334
.
29.
Murakami
,
H.
,
1985
, “
A Mixture Theory for Wave Propagation in Angle-Ply Laminates Part 1: Theory
,”
ASME J. Appl. Mech.
,
52
(
2
), pp.
331
337
.
30.
Murakami
,
H.
, and
Akiyama
,
A.
,
1985
, “
A Mixture Theory for Wave Propagation in Angle-ply Laminates, Part 2: Application
,”
ASME J. Appl. Mech.
,
52
(
2
), pp.
338
344
.
31.
Zhao
,
Y. P.
, and
Wei
,
P. J.
,
2009
, “
The Band Gap of 1d Viscoelastic Phononic Crystal
,”
Comput. Mater. Sci.
,
46
(
3
), pp.
603
606
.
32.
Mukherjee
,
S.
, and
Lee
,
E.
,
1978
, “
Dispersion Relations and Mode Shapes for Waves in Laminated Viscoelastic Composites by Variational Methods
,”
Int. J. Solids Struct.
,
14
(
1
), pp.
1
13
.
33.
Kohn
,
W.
,
Krumhansl
,
J. A.
, and
Lee
,
E. H.
,
1972
, “
Variational Methods for Dispersion Relations and Elastic Properties of Composite Materials
,”
ASME J. Appl. Mech.
,
39
(
2
), pp.
327
336
.
34.
Minagawa
,
S.
, and
Nemat-Nasser
,
S.
,
1977
, “
On Harmonic Waves in Layered Composites
,”
ASME J. Appl. Mech.
,
44
(
4
), pp.
689
695
.
35.
Minagawa
,
S.
,
Nemat-Nasser
,
S.
, and
Yamada
,
M.
,
1981
, “
Finite Element Analysis of Harmonic Waves in Layered and Fiber-Reinforced Composites
,”
Int. J. Numer. Methods Eng.
,
17
(
9
), pp.
1335
1353
.
36.
Naciri
,
T.
,
Navi
,
P.
, and
Ehrlacher
,
A.
,
1994
, “
Harmonic Wave Propagation in Viscoelastic Heterogeneous Materials—Part I: Dispersion and Damping Relations
,”
Mech. Mater.
,
18
(
4
), pp.
313
333
.
37.
Aberg
,
M.
, and
Gudmundson
,
P.
,
1997
, “
The Usage of Standard Finite Element Codes for Computation of Dispersion Relations in Materials With Periodic Microstructure
,”
J. Acoust. Soc. Am.
,
102
(
4
), pp.
2007
2013
.
38.
Wang
,
P.
,
Shim
,
J. M.
, and
Bertoldi
,
K.
,
2013
, “
Effects of Geometric and Material Nonlinearities on Tunable Band Gaps and Low-Frequency Directionality of Phononic Crystals
,”
Phys. Rev. B
,
88
(
1
), p.
014304
.
39.
Guarin-Zapata
,
N.
, and
Gomez
,
J.
,
2015
, “
Evaluation of the Spectral Finite Element Method With the Theory of Phononic Crystals
,”
J. Comput. Acoust.
,
23
(
2
), p.
1550004
.
40.
Wang
,
P.
, and
Bertoldi
,
K.
,
2012
, “
Mechanically Tunable Phononic Band Gaps in Three-Dimensional Periodic Elastomeric Structures
,”
Int. J. Solids Struct.
,
49
(
19–20
), pp.
2881
2885
.
41.
Bayat
,
A.
, and
Gordaninejad
,
F.
,
2014
, “
A Magnetically Field-Controllable Phononic Crystal
,”
Act. Passive Smart Struct. Integr. Syst.
,
9057
, p.
905713
.
42.
Shim
,
J.
,
Wang
,
P.
, and
Bertoldi
,
K.
,
2015
, “
Harnessing Instability-Induced Pattern Transformation to Design Tunable Phononic Crystals
,”
Int. J. Solids Struct.
,
58
, pp.
52
61
.
43.
Mousanezhad
,
D.
,
Babaee
,
S.
,
Ghosh
,
R.
,
Mahdi
,
E.
,
Bertoldi
,
K.
, and
Vaziri
,
A.
,
2015
, “
Honeycomb Phononic Crystals With Self-Similar Hierarchy
,”
Phys. Rev. B
,
92
(
10
), p.
104304
.
44.
Pennec
,
Y.
,
Djafari-Rouhani
,
B.
,
Vasseur
,
J.
,
Khelif
,
A.
, and
Deymier
,
P.
,
2004
, “
Tunable Filtering and Demultiplexing in Phononic Crystals With Hollow Cylinders
,”
Phys. Rev. E
,
69
(
4 Pt. 2
), p.
046608
.
45.
Yang
,
W.-P.
,
Wu
,
L.-Y.
, and
Chen
,
L.-W.
,
2008
, “
Refractive and Focusing Behaviours of Tunable Sonic Crystals With Dielectric Elastomer Cylindrical Actuators
,”
J. Phys. D: Appl. Phys.
,
41
(
13
), p.
135408
.
46.
Haque
,
A. B. M. T.
, and
Shim
,
J.
,
2016
, “
On Spatial Aliasing in the Phononic Band-Structure of Layered Composites
,”
Int. J. Solids Struct.
,
96
(
1
), pp.
380
392
.
47.
Hussein
,
M. I.
, and
Frazier
,
M. J.
,
2010
, “
Band Structure of Phononic Crystals With General Damping
,”
J. Appl. Phys.
,
108
(
9
), p.
093506
.
48.
Daraio
,
C.
,
Nesterenko
,
V.
,
Herbold
,
E.
, and
Jin
,
S.
,
2006
, “
Tunability of Solitary Wave Properties in One-Dimensional Strongly Nonlinear Phononic Crystals
,”
Phys. Rev. E
,
73
(
2 Pt. 2
), p.
026610
.
49.
Maldovan
,
M.
, and
Thomas
,
E. L.
,
2009
,
Periodic Materials and Interference Lithography for Photonics, Phononics and Mechanics
,
Wiley-VCH
,
Weinheim, Germany
.
50.
Graff
,
K. F.
,
1991
,
Wave Motion in Elastic Solids
,
Dover Publications
,
Mineola, NY
.
51.
Birkhoff
,
G.
, and
MacLane
,
S.
,
1977
,
A Survey of Modern Algebra
, 4th ed.,
Macmillan Publishing
,
New York
.
52.
Bracewell
,
R. N.
,
2003
,
Fourier Analysis and Imaging
,
Kluwer Academic/Plenum Publishers
,
New York
.
53.
Brillouin
,
L.
,
1946
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
,
McGraw-Hill
,
New York
.
54.
Backus
,
G. E.
,
1962
, “
Long-Wave Elastic Anisotropy Produced by Horizontal Layering
,”
J. Geophys. Res.
,
67
(
11
), pp.
4427
4440
.
55.
Khelif
,
A.
,
Aoubiza
,
B.
,
Mohammadi
,
S.
,
Adibi
,
A.
, and
Laude
,
V.
,
2006
, “
Complete Band Gaps in Two-Dimensional Phononic Crystal Slabs
,”
Phys. Rev. E
,
74
(
4 Pt. 2
), p.
046610
.
56.
Vasseur
,
J. O.
,
Hladky-Hennion
,
A.-C.
,
Djafari-Rouhani
,
B.
,
Duval
,
F.
,
Dubus
,
B.
, and
Pennec
,
Y.
,
2007
, “
Waveguiding in Two-Dimensional Piezoelectric Phononic Crystal Plates
,”
J. Appl. Phys.
,
101
(
11
), p.
114904
.
57.
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Djafari-Rouhani
,
B.
, and
Pennec
,
Y.
,
2008
, “
Absolute Forbidden Bands and Waveguiding in Two-Dimensional Phononic Crystal Plates
,”
Phys. Rev. B
,
77
(
8
), p.
085415
.
58.
Cheng
,
Y.
,
Liu
,
X. J.
, and
Wu
,
D. J.
,
2011
, “
Temperature Effects on the Band Gaps of Lamb Waves in a One-Dimensional Phononic-Crystal Plate (L)
,”
J. Acoust. Soc. Am.
,
129
(
3
), pp.
1157
1160
.
59.
Mace
,
B. R.
, and
Manconi
,
E.
,
2008
, “
Modelling Wave Propagation in Two-Dimensional Structures Using Finite Element Analysis
,”
J. Sound Vib.
,
318
(
4–5
), pp.
884
902
.
60.
Manconi
,
E.
,
2008
, “
The Wave Finite Element Method for 2-Dimensional Structures
,” Ph.D. thesis, University of Parma, Parma, Italy.
61.
Houillon
,
L.
,
Ichchou
,
M. N.
, and
Jezequel
,
L.
,
2005
, “
Wave Motion in Thin-Walled Structures
,”
J. Sound Vib.
,
281
(
3–5
), pp.
483
507
.
62.
Duhamel
,
D.
,
Mace
,
B. R.
, and
Brennan
,
M. J.
,
2006
, “
Finite Element Analysis of the Vibrations of Waveguides and Periodic Structures
,”
J. Sound Vib.
,
294
(
1–2
), pp.
205
220
.
63.
Mencik
,
J. M.
, and
Ichchou
,
M. N.
,
2007
, “
Wave Finite Elements in Guided Elastodynamics With Internal Fluid
,”
Int. J. Solids Struct.
,
44
(
7–8
), pp.
2148
2167
.
You do not currently have access to this content.