Periodic structures have interesting acoustic and vibration properties making them suitable for a wide variety of applications. In a periodic structure, the number of frequencies for each wavevector depends on the degrees-of-freedom of the unit cell. In this paper, we study the number of wavevectors available at each frequency in a band diagram. This analysis defines the upper bound for the maximum number of wavevectors for each frequency in a general periodic structure which might include damping. Investigation presented in this paper can also provide an insight for designing materials in which the interaction between unit cells is not limited to the closest neighbor. As an example application of this work, we investigate phonon dispersion curves in hexagonal form of boron nitride to show that first neighbor interaction is not sufficient to model dispersion curves with force-constant model.

References

1.
Brillouin
,
L.
,
2003
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
,
Courier, Dover Publications
,
Mineola, NY
.
2.
Mead
,
D. J.
, and
Markus
,
S.
,
1969
, “
The Forced Vibration of a Three-Layer, Damped Sandwich Beam With Arbitrary Boundary Conditions
,”
J. Sound Vib.
,
10
(
2
), pp.
163
175
.
3.
Mead
,
D. J.
,
1975
, “
Wave-Propagation and Natural Modes in Periodic Systems—1: Mono-Coupled Systems
,”
J. Sound Vib.
,
40
(
1
), pp.
1
18
.
4.
Faulkner
,
M. G.
, and
Hong
,
D. P.
,
1985
, “
Free-Vibrations of a Mono-Coupled Periodic System
,”
J. Sound Vib.
,
99
(
1
), pp.
29
42
.
5.
Vonflotow
,
A. H.
,
1986
, “
Disturbance Propagation in Structural Networks
,”
J. Sound Vib.
,
106
(
3
), pp.
433
450
.
6.
Yong
,
Y.
, and
Lin
,
Y. K.
,
1989
, “
Propagation of Decaying Waves in Periodic and Piecewise Periodic Structures of Finite Length
,”
J. Sound Vib.
,
129
(
1
), pp.
99
118
.
7.
Romeo
,
F.
, and
Paolone
,
A.
,
2007
, “
Wave Propagation in Three-Coupled Periodic Structures
,”
J. Sound Vib.
,
301
(
3–5
), pp.
635
648
.
8.
Yu
,
D. L.
,
Fang
,
J. Y.
,
Cai
,
L.
,
Han
,
X. Y.
, and
Wen
,
J. H.
,
2009
, “
Triply Coupled Vibrational Band Gap in a Periodic and Nonsymmetrical Axially Loaded Thin-Walled Bernoulli–Euler Beam Including the Warping Effect
,”
Phys. Lett. A
,
373
(
38
), pp.
3464
3469
.
9.
Langley
,
R. S.
,
Bardell
,
N. S.
, and
Ruivo
,
H. M.
,
1997
, “
The Response of Two-Dimensional Periodic Structures to Harmonic Point Loading: A Theoretical and Experimental Study of a Beam Grillage
,”
J. Sound Vib.
,
207
(
4
), pp.
521
535
.
10.
Manconi
,
E.
, and
Mace
,
B. R.
,
2009
, “
Wave Characterization of Cylindrical and Curved Panels Using a Finite Element Method
,”
J. Acoust. Soc. Am.
,
125
(
1
), pp.
154
163
.
11.
Ruzzene
,
M.
, and
Baz
,
A.
,
2000
, “
Control of Wave Propagation in Periodic Composite Rods Using Shape Memory Inserts
,”
ASME J. Vib. Acoust.
,
122
(
2
), pp.
151
159
.
12.
Duhamel
,
D.
,
Mace
,
B. R.
, and
Brennan
,
M. J.
,
2006
, “
Finite Element Analysis of the Vibrations of Waveguides and Periodic Structures
,”
J. Sound Vib.
,
294
(
1–2
), pp.
205
220
.
13.
Pany
,
C.
, and
Parthan
,
S.
,
2003
, “
Axial Wave Propagation in Infinitely Long Periodic Curved Panels
,”
ASME J. Vib. Acoust.
,
125
(
1
), pp.
24
30
.
14.
Kulpe
,
J. A.
,
Sabra
,
K. G.
, and
Leamy
,
M. J.
,
2016
, “
Acoustic Scattering From Phononic Crystals With Complex Geometry
,”
J. Acoust. Soc. Am.
,
139
(
5
), pp.
3009
3020
.
15.
Kulpe
,
J. A.
,
Sabra
,
K. G.
, and
Leamy
,
M. J.
,
2015
, “
A Three-Dimensional Bloch Wave Expansion to Determine External Scattering From Finite Phononic Crystals
,”
J. Acoust. Soc. Am.
,
137
(
6
), pp.
3299
3313
.
16.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
17.
Manktelow
,
K. L.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Weakly Nonlinear Wave Interactions in Multi-Degree of Freedom Periodic Structures
,”
Wave Motion
,
51
(
6
), pp.
886
904
.
18.
Kulpe
,
J. A.
,
Leamy
,
M. J.
, and
Sabra
,
K. G.
,
2014
, “
Determination of Acoustic Scattering From a Two-Dimensional Finite Phononic Crystal Using Bloch Wave Expansion
,”
ASME
Paper No. DETC2014-34404.
19.
Manktelow
,
K. L.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Analysis and Experimental Estimation of Nonlinear Dispersion in a Periodic String
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031016
.
20.
Kulpe
,
J. A.
,
Leamy
,
M. J.
, and
Sabra
,
K. G.
,
2014
, “
Exploration of a Bloch Wave Expansion Technique for Analyzing Backscattering From Large Fish Schools
,”
J. Acoust. Soc. Am.
,
135
(4
), p.
2177
.
21.
Kulpe
,
J. A.
,
Sabra
,
K. G.
, and
Leamy
,
M. J.
,
2014
, “
Bloch-Wave Expansion Technique for Predicting Wave Reflection and Transmission in Two-Dimensional Phononic Crystals
,”
J. Acoust. Soc. Am.
,
135
(
4
), pp.
1808
1819
.
22.
Manktelow
,
K.
,
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2013
, “
Finite-Element Based Perturbation Analysis of Wave Propagation in Nonlinear Periodic Structures
,”
Mech. Syst. Signal Process.
,
39
(
1
), pp.
32
46
.
23.
Baz
,
A.
,
2001
, “
Active Control of Periodic Structures
,”
ASME J. Vib. Acoust.
,
123
(
4
), pp.
472
479
.
24.
Hussein
,
M. I.
,
Hamza
,
K.
,
Hulbert
,
G. M.
,
Scott
,
R. A.
, and
Saitou
,
K.
,
2006
, “
Multiobjective Evolutionary Optimization of Periodic Layered Materials for Desired Wave Dispersion Characteristics
,”
Struct. Multidiscip. Optim.
,
31
(
1
), pp.
60
75
.
25.
Jensen
,
J. S.
,
2003
, “
Phononic Band Gaps and Vibrations in One- and Two-Dimensional Mass–Spring Structures
,”
J. Sound Vib.
,
266
(
5
), pp.
1053
1078
.
26.
Ruzzene
,
M.
,
Scarpa
,
F.
, and
Soranna
,
F.
,
2003
, “
Wave Beaming Effects in Two-Dimensional Cellular Structures
,”
Smart Mater. Struct.
,
12
(
3
), pp.
363
372
.
27.
Hempelmann
,
R.
,
2000
,
Quasielastic Neutron Scattering and Solid State Diffusion
,
Oxford University Press
,
New York
.
28.
Rols
,
S.
,
Benes
,
Z.
,
Anglaret
,
E.
,
Sauvajol
,
J. L.
,
Papanek
,
P.
,
Fischer
,
J. E.
,
Coddens
,
G.
,
Schober
,
H.
, and
Dianoux
,
A. J.
,
2000
, “
Phonon Density of States of Single-Wall Carbon Nanotubes
,”
Phys. Rev. Lett.
,
85
(
24
), pp.
5222
5225
.
29.
Gruneis
,
A.
,
Saito
,
R.
,
Kimura
,
T.
,
Cancado
,
L. G.
,
Pimenta
,
M. A.
,
Jorio
,
A.
,
Souza
,
A. G.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
,
2002
, “
Determination of Two-Dimensional Phonon Dispersion Relation of Graphite by Raman Spectroscopy
,”
Phys. Rev. B.
,
65
(
15
), p.
7
.
30.
Rokuta
,
E.
,
Hasegawa
,
Y.
,
Suzuki
,
K.
,
Gamou
,
Y.
,
Oshima
,
C.
, and
Nagashima
,
A.
,
1997
, “
Phonon Dispersion of an Epitaxial Monolayer Film of Hexagonal Boron Nitride on Ni(111)
,”
Phys. Rev. Lett.
,
79
(
23
), pp.
4609
4612
.
31.
Atkins
,
P.
, and
De Paula
,
J.
,
2016
,
Elements of Physical Chemistry
,
Oxford University Press
,
Oxford, UK
.
32.
Baskes
,
M. I.
,
Asta
,
M.
, and
Srinivasan
,
S. G.
,
2001
, “
Determining the Range of Forces in Empirical Many-Body Potentials Using First-Principles Calculations
,”
Philos. Mag. A
,
81
(
4
), pp.
991
1008
.
33.
Aljishi
,
R.
, and
Dresselhaus
,
G.
,
1982
, “
Lattice-Dynamical Model for Graphite
,”
Phys. Rev. B
,
26
(
8
), pp.
4514
4522
.
34.
Jishi
,
R. A.
, and
Dresselhaus
,
M. S.
,
1992
, “
Phonon Modes in Graphite, C60, and C60-Based Fibers
,”
Phys. Rev. B
,
45
(
19
), pp.
11305
11311
.
35.
Jishi
,
R. A.
,
Venkataraman
,
L.
,
Dresselhaus
,
M. S.
, and
Dresselhaus
,
G.
,
1993
, “
Phonon Modes in Carbon Nanotubules
,”
Chem. Phys. Lett.
,
209
(
1–2
), pp.
77
82
.
36.
Saito
,
R.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
,
1998
,
Physical Properties of Carbon Nanotubes
,
World Scientific, Imperial College Press
,
London
.
37.
Dove
,
M. T.
,
1993
,
Introduction to Lattice Dynamics
,
Cambridge University Press
,
New York
.
38.
Farzbod
,
F.
, and
Leamy
,
M. J.
,
2009
, “
The Treatment of Forces in Bloch Analysis
,”
J. Sound Vib.
,
325
(
3
), pp.
545
551
.
39.
Farzbod
,
F.
, and
Leamy
,
M. J.
,
2011
, “
Analysis of Bloch's Method and the Propagation Technique in Periodic Structures
,”
ASME J. Vib. Acoust.
,
133
(
3
), p.
031010
.
40.
Farzbod
,
F.
, and
Leamy
,
M. J.
,
2011
, “
Analysis of Bloch's Method in Structures With Energy Dissipation
,”
ASME J. Vib. Acoust.
,
133
(
5
), p.
051010
.
41.
Farzbod
,
F.
,
2010
, “
Analysis of Bloch Formalism in Undamped and Damped Periodic Structures
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.https://smartech.gatech.edu/bitstream/handle/1853/42885/farzbod_farhad_201012_phd.pdf
42.
Meyer
,
C.
,
2001
, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, PA.
43.
Rubio
,
A.
,
Corkill
,
J. L.
, and
Cohen
,
M. L.
,
1994
, “
Theory of Graphitic Boron Nitride Nanotubes
,”
Phys. Rev. B
,
49
(
7
), p.
5081
.
44.
Chopra
,
N. G.
,
Luyken
,
R. J.
,
Cherrey
,
K.
,
Crespi
,
V. H.
,
Cohen
,
M. L.
,
Louie
,
S. G.
, and
Zettl
,
A.
,
1995
, “
Boron-Nitride Nanotubes
,”
Science
,
269
(
5226
), pp.
966
967
.
45.
Wang
,
Y.
,
Wang
,
J. J.
,
Wang
,
W. Y.
,
Mei
,
Z. G.
,
Shang
,
S. L.
,
Chen
,
L. Q.
, and
Liu
,
Z. K.
,
2010
, “
A Mixed-Space Approach to First-Principles Calculations of Phonon Frequencies for Polar Materials
,”
J. Phys.: Condens. Matter
,
22
(
20
), p.
5
.http://iopscience.iop.org/article/10.1088/0953-8984/22/20/202201/meta
You do not currently have access to this content.