An approach is proposed to obtain the global analytical modes (GAMs) and establish discrete dynamic model with low degree-of-freedom for a three-axis attitude stabilized spacecraft installed with a pair of solar arrays. The flexible spacecraft is simplified as a hub–plate system which is a typical rigid-flexible coupling system. The governing equations of motion and the corresponding boundary conditions are derived by using the Hamiltonian principle. Describing the rigid motion and elastic vibration of all the system components with a uniform set of generalized coordinates, the system GAMs are solved from those dynamic equations and boundary conditions, which are used to discretize the equations of motion. For comparison, another discrete model is also derived using assumed mode method (AMM). Using ansys software, a finite element model is established to verify the GAM and AMM models. Subsequently, the system global modes are investigated using the GAM approach. Further, the performance of GAM model in dynamic analysis and cooperative control for attitude motion and solar panel vibration is assessed by comparing with AMM model. The discrete dynamic model based on GAMs has the capability to carry out spacecraft dynamic analysis in the same accuracy as a high-dimensional AMM model. The controller based on GAM model can suppress the oscillation of solar panels and make the control torque stable in much shorter time.

References

References
1.
Li
,
J.
, and
Yan
,
S.
,
2014
, “
Thermally Induced Vibration of Composite Solar Array With Honeycomb Panels in Low Earth Orbit
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
419
432
.
2.
Hu
,
Q.
,
Shi
,
P.
, and
Gao
,
H.
,
2007
, “
Adaptive Variable Structure and Commanding Shaped Vibration Control of Flexible Spacecraft
,”
J. Guid. Control Dyn.
,
30
(
3
), pp.
804
815
.
3.
Bang
,
H.
,
Ha
,
C. K.
, and
Kim
,
J. H.
,
2005
, “
Flexible Spacecraft Attitude Maneuver by Application of Sliding Mode Control
,”
Acta Astronaut.
,
57
(
11
), pp.
841
850
.
4.
Sales
,
T. P.
,
Rade
,
D. A.
, and
De Souza
,
L. C. G.
,
2013
, “
Passive Vibration Control of Flexible Spacecraft Using Shunted Piezoelectric Transducers
,”
Aerosp. Sci. Technol.
,
29
(
1
), pp.
403
412
.
5.
Lee
,
K. W.
, and
Singh
,
S. N.
,
2012
, “
L1 Adaptive Control of Flexible Spacecraft Despite Disturbances
,”
Acta Astronaut.
,
80
, pp.
24
35
.
6.
Karray
,
F.
,
Grewal
,
A.
,
Glaum
,
M.
, and
Modi
,
V.
,
1997
, “
Stiffening Control of a Class of Nonlinear Affine Systems
,”
IEEE Trans. Aerosp. Electron. Syst.
,
33
(
2
), pp.
473
484
.
7.
Cai
,
G. P.
, and
Lim
,
C. W.
,
2008
, “
Dynamics Studies of a Flexible Hub–Beam System With Significant Damping Effect
,”
J. Sound Vib.
,
318
(
1
), pp.
1
17
.
8.
Zhang
,
J.
, and
Wang
,
T.
,
2013
, “
Coupled Attitude-Orbit Control of Flexible Solar Sail for Displaced Solar Orbit
,”
J. Spacecr. Rockets
,
50
(
3
), pp.
675
685
.
9.
Hablani
,
H. B.
,
1982
, “
Constrained and Unconstrained Modes: Some Modeling Aspects of Flexible Spacecraft
,”
J. Guid. Control Dyn.
,
5
(
2
), pp.
164
173
.
10.
Jiang
,
J. P.
, and
Li
,
D. X.
,
2011
, “
Robust H-Infinity Vibration Control for Smart Solar Array Structure
,”
J. Vib. Control
,
17
(
4
), pp.
505
515
.
11.
Jiang
,
J. P.
, and
Li
,
D. X.
,
2010
, “
Decentralized Guaranteed Cost Static Output Feedback Vibration Control for Piezoelectric Smart Structures
,”
Smart Mater. Struct.
,
19
(
1
), p.
015018
.
12.
Dietz
,
S.
,
Wallrapp
,
O.
, and
Wiedemann
,
S.
,
2003
, “
Nodal vs. Modal Representation in Flexible Multibody System Dynamics
,”
Multibody Dynamics
,
Jorge A. C.
Ambrósio
, ed.,
IDMEC/IST
,
Lisbon, Portugal
.
13.
Pan
,
K. Q.
, and
Liu
,
J. Y.
,
2012
, “
Investigation on the Choice of Boundary Conditions and Shape Functions for Flexible Multi-Body System
,”
Acta Mech. Sin.
,
28
(
1
), pp.
180
189
.
14.
Schwertassek
,
R.
,
Wallrapp
,
O.
, and
Shabana
,
A. A.
,
1999
, “
Flexible Multibody Simulation and Choice of Shape Functions
,”
Nonlinear Dyn.
,
20
(
4
), pp.
361
380
.
15.
Johnston
,
J. D.
, and
Thornton
,
E. A.
,
1998
, “
Thermally Induced Attitude Dynamics of a Spacecraft With a Flexible Appendage
,”
J. Guid. Control Dyn.
,
21
(
4
), pp.
581
587
.
16.
Hughes
,
P. C.
,
1980
, “
Modal Identities for Elastic Bodies, With Application to Vehicle Dynamics and Control
,”
ASME J. Appl. Mech.
,
47
(
1
), pp.
177
184
.
17.
Hughes
,
P. C.
,
1974
, “
Dynamics of Flexible Space Vehicles With Active Attitude Control
,”
Celestial Mech. Dyn. Astron.
,
9
(
1
), pp.
21
39
.
18.
Hablani
,
H. B.
,
1990
, “
Hinges-Free and Hinges-Locked Modes of a Deformable Multibody Space Station—A Continuum Analysis
,”
J. Guid. Control Dyn.
,
13
(
2
), pp.
286
296
.
19.
Hablani
,
H. B.
,
1982
, “
Modal Analysis of Gyroscopic Flexible Spacecraft: A Continuum Approach
,”
J. Guid. Control Dyn.
,
5
(
5
), pp.
448
457
.
20.
Hurty
,
W. C.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
(
4
), pp.
678
685
.
21.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
22.
Liu
,
L.
, and
Cao
,
D.
,
2016
, “
Dynamic Modeling for a Flexible Spacecraft With Solar Arrays Composed of Honeycomb Panels and Its Proportional–Derivative Control With Input Shaper
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
8
), p.
081008
.
23.
Vakil
,
M.
,
Fotouhi
,
R.
,
Nikiforuk
,
P. N.
, and
Heidari
,
F.
,
2011
, “
A Study of the Free Vibration of Flexible-Link Flexible-Joint Manipulators
,”
Proc. Inst. Mech. Eng. Part C
,
225
(
6
), pp.
1361
1371
.
24.
Barbieri
,
E.
, and
OüZguüNer
,
U.
,
1988
, “
Unconstrained and Constrained Mode Expansions for a Flexible Slewing Link
,”
ASME J. Dyn. Syst. Meas. Control
,
110
(
4
), pp.
416
421
.
25.
Liu
,
L.
,
Cao
,
D.
, and
Tan
,
X.
,
2016
, “
Studies on Global Analytical Mode for a Three-Axis Attitude Stabilized Spacecraft by Using the Rayleigh-Ritz Method
,”
Arch. Appl. Mech.
,
86
(
12
), pp.
1927
1946
.
26.
Song
,
M. T.
,
Cao
,
D. Q.
, and
Zhu
,
W. D.
,
2011
, “
Dynamic Analysis of a Micro-Resonator Driven by Electrostatic Combs
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
8
), pp.
3425
3442
.
27.
Cao
,
D. Q.
,
Song
,
M. T.
,
Zhu
,
W. D.
,
Tucker
,
R. W.
, and
Wang
,
C. H. T.
,
2012
, “
Modeling and Analysis of the In-Plane Vibration of a Complex Cable-Stayed Bridge
,”
J. Sound Vib.
,
331
(
26
), pp.
5685
5714
.
28.
Paik
,
J. K.
,
Thayamballi
,
A. K.
, and
Kim
,
G. S.
,
1999
, “
The Strength Characteristics of Aluminum Honeycomb Sandwich Panels
,”
Thin-Walled Struct.
,
35
(
3
), pp.
205
231
.
29.
Lachiver
,
J. M.
,
2012
, “
Pléiades: Operational Programming First Results
,” 12th International Conference on Space Operations (
SpaceOps 2012
), Stockholm, Sweden, June 11–15, pp. 1307–1316.
30.
Hu
,
Z.
, and
Hong
,
J.
,
1999
, “
Modeling and Analysis of a Coupled Rigid-Flexible System
,”
Appl. Math. Mech.
,
20
(
10
), pp.
1167
1174
.
You do not currently have access to this content.