In order to accurately study the effect of curvature on panel aeroelastic behaviors, a fluid–structure coupling algorithm is adopted to analyze the curved panel flutter in transonic and supersonic airflows. First, the governing equation for the motion of the curved panel and the structure solver are presented. Then, the fluid governing equations, the fluid solver, and the fluid–structure coupling algorithm are introduced briefly. Finally, rich aeroelastic responses of the curved panel are captured using this algorithm. And the mechanisms of them are explored by various analysis tools. It is found that the curvature produces initial aerodynamic loads above the panel. Thus, the static aeroelastic deformation exists for the curved panel in stable state. At Mach 2, with its stability lost on this static aeroelastic deformation, the curved panel shows asymmetric flutter. At Mach 0.8 and 0.9, the curved panel exhibits only positive static aeroelastic deformation due to this initial aerodynamic load. At Mach 1.0, as the dynamic pressure increases, the curved panel loses its static and dynamic stability in succession, and behaves as static aeroelastic deformations, divergences, and flutter consequentially. At Mach 1.2, with its stability lost, the curved panel flutters more violently toward the negative direction. The results obtained could guide the panel design and panel flutter suppression for flight vehicles with high performances.

References

References
1.
Clark, R., Cox, D., Curtiss, H. C., Jr., Edwards, J. W., Hall, K. C., Peters, D. A., Scanlan, R., Simiu, E., Sisto, F., and Strganac, T. W.,
2005
,
A Modern Course in Aeroelasticity
,
Springer, Dordrecht
,
The Netherlands
.
2.
McNamara
,
J. J.
, and
Friedmann
,
P. P.
,
2011
, “
Aeroelastic and Aerothermoelastic Analysis in Hypersonic Flow: Past, Present, and Future
,”
AIAA J.
,
49
(
6
), pp.
1089
1122
.
3.
Kang
,
W.
,
Zhang
,
J. Z.
, and
Feng
,
P. H.
,
2012
, “
Aerodynamic Analysis of a Localized Flexible Airfoil at Low Reynolds Numbers
,”
Commun. Comput. Phys.
,
11
(
4
), pp.
1300
1310
.
4.
Menaa
,
M.
, and
Lakis
,
A. A.
,
2013
, “
Numerical Investigation of the Flutter of a Spherical Shell
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021010
.
5.
Dowell
,
E. H.
,
1970
, “
Panel Flutter: A Review of the Aeroelastic Stability of Plates and Shells
,”
AIAA J.
,
8
(
3
), pp.
385
399
.
6.
Mei
,
C. H.
,
Abdel-Motagly
,
K.
, and
Chen
,
R.
,
1999
, “
Review of Nonlinear Panel Flutter at Supersonic and Hypersonic Speeds
,”
ASME Appl. Mech. Rev.
,
52
(
10
), pp.
321
332
.
7.
Marzocca
,
P.
,
Fazelzadeh
,
S. A.
, and
Hosseini
,
M.
,
2011
, “
A Review of Nonlinear Aero-Thermo-Elasticity of Functionally Graded Panels
,”
J. Therm. Stresses
,
34
(
5–6
), pp.
536
568
.
8.
Ashley
,
H.
, and
Zartarian
,
G.
,
1956
, “
Piston Theory—A New Aerodynamic Tool for the Aeroelastician
,”
J. Aeronaut. Sci.
,
23
(
12
), pp.
1109
1118
.
9.
Dowell
,
E. H.
,
1967
, “
Nonlinear Oscillations of a Fluttering Plate II
,”
AIAA J.
,
5
(
10
), pp.
1856
1862
.
10.
Zhang
,
W. W.
,
Ye
,
Z. Y.
,
Zhang
,
C. A.
, and
Liu
,
F.
,
2009
, “
Supersonic Flutter Analysis Based on a Local Piston Theory
,”
AIAA J.
,
47
(
10
), pp.
2321
2328
.
11.
Davis
,
G. A.
, and
Bendiksen
,
O. O.
,
1993
, “
Unsteady Transonic Two-Dimensional Euler Solutions Using Finite Elements
,”
AIAA J.
,
31
(
6
), pp.
1051
1059
.
12.
Gordiner
,
R. E.
, and
Fithen
,
R.
,
2003
, “
Coupling of a Nonlinear Finite Element Structural Method With a Navier–Stokes Solver
,”
Comput. Struct.
,
81
(
2
), pp.
75
89
.
13.
Visbal
,
M. R.
, and
Gordnier
,
R. E.
,
2004
, “
Numerical Simulation of the Interaction of a Transitional Boundary Layer With a 2-D Flexible Panel in the Subsonic Regime
,”
J. Fluid. Struct.
,
19
(
7
), pp.
881
903
.
14.
Hashimoto
,
A.
,
Aoyama
,
T.
, and
Nakamura
,
Y.
,
2009
, “
Effects of Turbulent Boundary Layer on Panel Flutter
,”
AIAA J.
,
47
(
12
), pp.
2785
2791
.
15.
Mublstein
,
L.
,
Gaspers
,
P. A.
, and
Riddle
,
D. W.
,
1968
, “
An Experimental Study of the Influence of the Turbulent Boundary Layer on Panel Flutter
,”
NASA
Paper No. TN D–4486.
16.
Visbal
,
M.
,
2014
, “
Viscous and Inviscid Interactions of an Oblique Shock With a Flexible Panel
,”
J. Fluid. Struct.
,
48
, pp.
27
45
.
17.
Shishaeva
,
A.
,
Vedeneev
,
V.
, and
Aksenov
,
A.
,
2015
, “
Nonlinear Single-Mode and Multi-Mode Panel Flutter Oscillations at Low Supersonic Speeds
,”
J. Fluid. Struct.
,
56
, pp.
205
223
.
18.
Vedeneev
,
V. V.
,
Guvernyuk
,
S. V.
,
Zubkov
,
A. F.
, and
Kolotnikov
,
M. E.
,
2010
, “
Experimental Observation of Single Mode Panel Flutter in Supersonic Gas Flow
,”
J. Fluid. Struct.
,
26
(
5
), pp.
764
779
.
19.
Mei
,
G. H.
,
Zhang
,
J. Z.
,
Xi
,
G.
,
Sun
,
X.
, and
Chen
,
J. H.
,
2014
, “
Analysis of Supersonic and Transonic Panel Flutter Using a Fluid-Structure Coupling Algorithm
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031013
.
20.
Dowell
,
E. H.
,
1969
, “
Nonlinear Flutter of Curved Plates
,”
AIAA J.
,
7
(
3
), pp.
424
431
.
21.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Nithiarasu
,
P.
,
2009
,
The Finite Element Method for Fluid Dynamics
,
6th ed.
,
Elsevier
,
Singapore
.
22.
Massarotti
,
N.
,
Arpino
,
F.
,
Lewis
,
R. W.
, and
Nithiarasu
,
P.
,
2006
, “
Explicit and Semi-Implicit CBS Procedures for Incompressible Viscous Flows
,”
Int. J. Numer. Methods Eng.
,
66
(
10
), pp.
1618
1640
.
23.
Nithiarasu
,
P.
,
Mathur
,
J. S.
,
Weatherill
,
N. P.
, and
Morgan
,
K.
,
2004
, “
Three-Dimensional Incompressible Flow Calculations Using the Characteristic Based Split (CBS) Scheme
,”
Int. J. Numer. Methods Fluids
,
44
(
11
), pp.
1207
1229
.
24.
Nithiarasu
,
P.
,
2003
, “
An Efficient Artificial Compressibility (AC) Scheme Based on the Characteristic Based Split (CBS) Method for Incompressible Flows
,”
Int. J. Numer. Methods Eng.
,
56
(
13
), pp.
1815
1845
.
25.
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2002
, “
Physical Interpretation of the Proper Orthogonal Modes Using the Singular Value Decomposition
,”
J. Sound Vib.
,
249
(
5
), pp.
849
865
.
26.
Chatterjee
,
A.
,
2000
, “
An Introduction to the Proper Orthogonal Decomposition
,”
Curr. Sci. India
,
78
(
7
), pp.
808
817
.
27.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
,
16
(
3
), pp.
285
317
.
You do not currently have access to this content.