Robustness is a highly desirable quality in microelectromechanical systems (MEMS). Sensors and resonators operating on nonlinear dynamic principles such as internal resonances are no exception to this, and in addition, when nonlinear dynamic phenomena are used to enhance device sensitivity, their requirements for robustness may even be greater. This work discusses two aspects as they relate to the robustness and performance of nonlinear resonators. In the first aspect, different resonator designs are compared to find which among them have a better capacity to deliver reliable and reproducible performance in face of variations from the nominal design due to manufacturing process uncertainties/tolerances. The second aspect attempts to identify the inherent topological features that, if present in a resonator, enhance its robustness. Thus, the first part of this work is concerned with uncertainty analysis of several candidate nonlinear resonators operating under the principle of 1:2 internal resonance and obtained via a hierarchical optimization method introduced by the authors. The second part discusses specific changes to the computational design process that can be made so as to enhance the robustness and reliability of the candidate resonators.

References

References
1.
Rebeiz
,
R. M.
,
2003
,
RF MEMS: Theory, Design, and Technology
,
1st ed.
,
Wiley
,
New York
.
2.
Cantwell
,
P. R.
,
Kim
,
H.
,
Schneider
,
M. M.
,
Hsu
,
H. H.
,
Peroulis
,
D.
,
Stach
,
E. A.
, and
Strachan
,
A.
,
2012
, “
Estimating the In-Plane Young's Modulus of Polycrystalline Films in MEMS
,”
J. Microelectromechan. Syst.
,
21
(
4
), pp.
840
849
.
3.
Kolis
,
P.
,
Bajaj
,
A. K.
, and
Koslowski
,
M.
,
2017
, “
Quantification of Uncertainty in Creep Failure of RF-MEMS Switches
,”
J. Microelectromech. Syst.
,
26
(
1
), pp.
283
294
.
4.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics (Microsystems)
,
1st ed.
,
Springer
,
New York
.
5.
Rhoads
,
J. F.
,
Shaw
,
S. W.
, and
Turner
,
K. L.
,
2010
, “
Nonlinear Dynamics and Its Applications in Micro- and Nanoresonators
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
3
), p.
034001
.
6.
Karabalin
,
R. B.
,
Cross
,
M. C.
, and
Roukes
,
M. L.
,
2009
, “
Nonlinear Dynamics and Chaos in Two Coupled Nanomechanical Resonators
,”
Phys. Rev. B
,
79
(
16
), p.
165309
.
7.
Nayfeh
,
A. H.
,
2000
,
Nonlinear Interactions: Analytical, Computational, and Experimental Methods
,
Wiley-Interscience
,
New York
.
8.
Westra
,
H. J. R.
,
Poot
,
M.
,
van der Zant
,
H. S. J.
, and
Venstra
,
W. J.
,
2010
, “
Nonlinear Modal Interactions in Clamped-Clamped Mechanical Resonators
,”
Phys. Rev. Lett.
,
105
(
11
), p.
117205
.
9.
Samanta
,
C.
,
Yasasvi Gangavarapu
,
P. R.
, and
Naik
,
A. K.
,
2015
, “
Nonlinear Mode Coupling and Internal Resonances in MoS2 Nanoelectromechanical System
,”
Appl. Phys. Lett.
,
107
(
17
), p.
173110
.
10.
Ramini
,
A. H.
,
Hajjaj
,
A. Z.
, and
Younis
,
M. I.
,
2016
, “
Tunable Resonators for Nonlinear Modal Interactions
,”
Sci. Rep.
,
6
(
1
), p.
34717
.
11.
Vyas
,
A.
,
Bajaj
,
A. K.
,
Raman
,
A.
, and
Peroulis
,
D.
,
2009
, “
A Microresonator Design Based on Nonlinear 1:2 Internal Resonance in Flexural Structural Modes
,”
J. Microelectromech. Syst.
,
18
(
3
), pp.
744
762
.
12.
Tripathi
,
A.
, and
Bajaj
,
A. K.
,
2016
, “
Topology Optimization and Internal Resonances in Transverse Vibrations of Hyperelastic Plates
,”
Int. J. Solids Struct.
,
81
, pp.
311
328
.
13.
Tripathi
,
A.
, and
Bajaj
,
A. K.
,
2013
, “
Computational Synthesis for Nonlinear Dynamics Based Design of Planar Resonant Structures
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051031
.
14.
Tripathi
,
A.
,
2015
, “
On Computational Synthesis and Dynamic Analysis of Nonlinear Resonant Systems With Internal Resonances
,”
Ph.D. thesis
, Purdue University, West Lafayette, IN.
15.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2002
,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
New York
.
16.
He
,
W.
,
Bindel
,
D.
, and
Govindjee
,
S.
,
2011
, “
Topology Optimization in Micromechanical Resonator Design
,”
Optim. Eng.
,
13
(2), pp.
271
292
.
17.
Ghanem
,
R.
, and
Spanos
,
P.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
1st ed.
,
Springer Verlag
,
New York
.
18.
Goyal
,
R.
,
2012
, “
Application of Uncertainty Quantification Techniques for a Nonlinear 1:2 Internal Resonance System
,”
M.S. thesis
, Purdue University, West Lafayette, IN.
19.
Xiu
,
D.
,
2007
, “
Efficient Collocational Approach for Parametric Uncertainty Analysis
,”
Commun. Comput. Phys.
,
2
(
2
), pp.
293
309
.
20.
Iman
,
R. L.
, and
Helton
,
J. C.
,
1988
, “
An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models
,”
Risk Anal.
,
8
(
1
), pp.
71
90
.
21.
Smith
,
R. C.
,
2013
,
Uncertainty Quantification: Theory, Implementation, and Applications
(Computational Science and Engineering),
SIAM
,
Philadelphia, PA
.
22.
Allen
,
M. S.
, and
Camberos
,
J. A.
,
2009
, “
Comparison of Uncertainty Propagation/Response Surface Techniques for Two Aeroelastic Systems
,”
AIAA
Paper No. 2009-2269.
23.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
, pp.
239
245
.
24.
Friedman
,
J. H.
,
1991
, “
Multivariate Adaptive Regression Splines
,”
Ann. Appl. Stat.
,
19
(
1
), pp.
1
67
.
25.
Jekabsons
,
G.
,
2009
, “
ARESLAB: Adaptive Regression Splines Toolbox
,” Gints Jekabsons, Riga Technical University, Riga, Latvia, accessed May 15, 2016, http://www.cs.rtu.lv/jekabsons/
26.
Balachandran
,
B.
, and
Nayfeh
,
A. H.
,
1990
, “
Nonlinear Motions of Beam-Mass Structure
,”
Nonlinear Dyn.
,
1
(
1
), pp.
39
61
.
27.
Bajaj
,
A. K.
,
Chang
,
S. I.
, and
Johnson
,
J. M.
,
1994
, “
Amplitude Modulated Dynamics of a Resonantly Excited Autoparametric Two Degree-of-Freedom System
,”
Nonlinear Dyn.
,
5
(
4
), pp.
433
457
.
28.
Tung
,
R. C.
,
Garg
,
A.
,
Kovacs
,
A.
,
Peroulis
,
D.
, and
Raman
,
A.
,
2013
, “
Estimating Residual Stress, Curvature and Boundary Compliance of Doubly Clamped MEMS From Their Vibration Response
,”
J. Micromech. Microeng.
,
23
(
4
), p.
045009
.
29.
Zeng
,
J.
,
Garg
,
A.
,
Kovacs
,
A.
,
Bajaj
,
A. K.
, and
Peroulis
,
D.
,
2015
, “
An Equation-Based Nonlinear Model for Non-Flat MEMS Fixed–Fixed Beams With Non-Vertical Anchoring Supports
,”
J. Micromech. Microeng.
,
25
(
5
), p.
055018
.
You do not currently have access to this content.