We investigate the static and dynamic behavior of a multilayer clamped-free–clamped-free (CFCF) microplate, which is made of polyimide, gold, chromium, and nickel. The microplate is slightly curved away from a stationary electrode and is electrostatically actuated. The free and forced vibrations of the microplate are examined. First, we experimentally investigate the variation of the first natural frequency under the electrostatic direct current (DC) load. Then, the forced dynamic behavior is investigated by applying a harmonic alternating current (AC) voltage superimposed to a DC voltage. Results are shown demonstrating the transition of the dynamic response of the microplate from hardening to softening as the DC voltage is changed as well the dynamic pull-in phenomenon. For the theoretical model, we adopt a dynamic analog of the von Karman governing equations accounting for initial curvature imperfection. These equations are then used to develop a reduced-order model (ROM) based on the Galerkin procedure to simulate the mechanical behavior of the microplate. We compare the theoretical results with the experimental data and show excellent agreement among the results. We also examine the effect of the initial rise on the natural frequencies of first three symmetric–symmetric modes of the plate.

References

1.
Tong
,
P.
, and
Huang
,
W.
,
2002
, “
Large Deflection of Thin Plates in Pressure Sensor Applications
,”
ASME J. Appl. Mech.
,
69
(
6
), pp.
785
789
.
2.
Roman
,
M.
, and
Aubry
,
N.
,
2003
, “
Design and Fabrication of Electrostatically Actuated Synthetic Microjets
,”
ASME
Paper No. IMECE2003-41579.
3.
Ng
,
T. Y.
,
Jiang
,
T. Y.
,
Li
,
H.
,
Lam
,
K. Y.
, and
Reddy
,
J. N.
,
2004
, “
A Coupled Field Study on the Non-Linear Dynamic Characteristics of an Electrostatic Micropump
,”
J. Sound Vib.
,
273
(
4–5
), pp.
989
1006
.
4.
Machauf
,
A.
,
Nemirovsky
,
Y.
, and
Dinnar
,
U.
,
2005
, “
A Membrane Micropump Electrostatically Actuated Across the Working Fluid
,”
J. Micromech. Microeng.
,
15
(
12
), pp.
2309
2316
.
5.
Horowitz
,
S.
,
Nishida
,
T.
,
Cattafesta
,
L.
, and
Sheplak
,
M.
,
2007
, “
Development of a Micromachined Piezoelectric Microphone for Aeroacoustics Applications
,”
J. Acoust. Soc. Am.
,
122
(
6
), pp.
3428
3436
.
6.
Amirouche
,
F.
,
Zhou
,
Y.
, and
Johnson
,
T.
,
2009
, “
Current Micropump Technologies and Their Biomedical Applications
,”
Microsyst. Technol.
,
15
(
5
), pp.
647
666
.
7.
Faris
,
W. F.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2002
, “
Mechanical Behavior of an Electrostatically Actuated Micropump
,”
AIAA
Paper No. 2002-1303.
8.
Medina
,
L.
,
Gilat
,
R.
,
Ilic
,
B.
, and
Krylov
,
S.
,
2014
, “
Experimental Investigation of the Snap-Through Buckling of Electrostatically Actuated Initially Curved Pre-Stressed Micro Beams
,”
Sens. Actuators A
,
220
, pp.
323
332
.
9.
Saghir
,
S.
,
Bellaredj
,
M.
,
Ramini
,
A.
, and
Younis
,
M.
,
2016
, “
Initially Curved Microplates Under Electrostatic Actuation: Theory and Experiment
,”
J. Micromech. Microeng.
,
26
(
9
), p.
095004
.
10.
Farokhi
,
H.
,
Ghayesh
,
M. H.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Dynamics of a Geometrically Imperfect Microbeam Based on the Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
68
, pp.
11
23
.
11.
Medina
,
L.
,
Gilat
,
R.
, and
Krylov
,
S.
,
2016
, “
Bistable Behavior of Electrostatically Actuated Initially Curved Micro Plate
,”
Sens. Actuators A
,
248
, pp.
193
198
.
12.
Krylov
,
S.
, and
Dick
,
N.
,
2010
, “
Dynamic Stability of Electrostatically Actuated Initially Curved Shallow Micro Beams
,”
Continuum Mech. Thermodyn.
,
22
(
6–8
), pp.
445
468
.
13.
Alijani
,
F.
, and
Amabili
,
M.
,
2013
, “
Theory and Experiments for Nonlinear Vibrations of Imperfect Rectangular Plates With Free Edges
,”
J. Sound Vib.
,
332
(
14
), pp.
3564
3588
.
14.
Ilyas
,
S.
,
Arevalo
,
A.
,
Bayes
,
E.
,
Foulds
,
I. G.
, and
Younis
,
M. I.
,
2015
, “
Torsion Based Universal MEMS Logic Device
,”
Sens. Actuators A
,
236
, pp.
150
158
.
15.
Petras
,
A.
,
1999
,
Design of Sandwich Structures
,
University of Cambridge
,
Cambridge, UK
.
16.
Krylov
,
S.
,
Ilic
,
B. R.
,
Schreiber
,
D.
,
Seretensky
,
S.
, and
Craighead
,
H.
,
2008
, “
The Pull-In Behavior of Electrostatically Actuated Bistable Microstructures
,”
J. Micromech. Microeng.
,
18
(
5
), p.
055026
.
17.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2010
, “
The Dynamic Behavior of MEMS Arch Resonators Actuated Electrically
,”
Int. J. Nonlinear Mech.
,
45
(
7
), pp.
704
713
.
18.
Ruzziconi
,
L.
,
Bataineh
,
A. M.
,
Younis
,
M. I.
,
Cui
,
W.
, and
Lenci
,
S.
,
2013
, “
Nonlinear Dynamics of an Electrically Actuated Imperfect Microbeam Resonator: Experimental Investigation and Reduced-Order Modeling
,”
J. Micromech. Microeng.
,
23
(
7
), p.
075012
.
19.
Jaber
,
N.
,
Ramini
,
A.
,
Carreno
,
A. A.
, and
Younis
,
M. I.
,
2016
, “
Higher Order Modes Excitation of Electrostatically Actuated Clamped–Clamped Microbeams: Experimental and Analytical Investigation
,”
J. Micromech. Microeng.
,
26
(
2
), p.
025008
.
20.
Celep
,
Z.
,
1976
, “
Free Flexural Vibration of Initially Imperfect Thin Plates With Large Elastic Amplitudes
,”
ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
56
(
9
), pp.
423
428
.
21.
Celep
,
Z.
,
1980
, “
Shear and Rotatory Inertia Effects on the Large Amplitude Vibration of the Initially Imperfect Plates
,”
ASME J. Appl. Mech.
,
47
(
3
), pp.
662
666
.
22.
Yamaki
,
N.
, and
Chiba
,
M.
,
1983
, “
Nonlinear Vibrations of a Clamped Rectangular Plate With Initial Deflection and Initial Edge Displacement—Part I: Theory
,”
Thin-Walled Struct.
,
1
(
1
), pp.
3
29
.
23.
Yamaki
,
N.
,
Otomo
,
K.
, and
Chiba
,
M.
,
1983
, “
Nonlinear Vibrations of a Clamped Rectangular Plate With Initial Deflection and Initial Edge Displacement—Part II: Experiment
,”
Thin-Walled Struct.
,
1
(
2
), pp.
101
119
.
24.
Marı́n
,
J.
,
Perkins
,
N. C.
, and
Vorus
,
W.
,
1994
, “
Non-Linear Response of Predeformed Plates Subject to Harmonic In-Plane Edge Loading
,”
J. Sound Vib.
,
176
(
4
), pp.
515
529
.
25.
Lin
,
C.
, and
Chen
,
L.
,
1989
, “
Large-Amplitude Vibration of an Initially Imperfect Moderately Thick Plate
,”
J. Sound Vib.
,
135
(
2
), pp.
213
224
.
26.
Ostiguy
,
G. L.
, and
Sassi
,
S.
,
1992
, “
Effects of Initial Geometric Imperfections on Dynamic Behavior of Rectangular Plates
,”
Nonlinear Dyn.
,
3
(
3
), pp.
165
181
.
27.
Chao
,
P. C.
,
Chiu
,
C.-W.
, and
Tsai
,
C.
,
2006
, “
A Novel Method to Predict the Pull-In Voltage in a Closed Form for Micro-Plates Actuated by a Distributed Electrostatic Force
,”
J. Micromech. Microeng.
,
16
(
5
), pp.
986
998
.
28.
Vogl
,
G. W.
, and
Nayfeh
,
A. H.
,
2003
, “
A Reduced-Order Model for Electrically Actuated Clamped Circular Plates
,”
ASME
Paper No. DETC2003/VIB-48530.
29.
Zhao
,
X.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2004
, “
A Reduced-Order Model for Electrically Actuated Microplates
,”
J. Micromech. Microeng.
,
14
(
7
), pp.
900
906
.
30.
Saghir
,
S.
, and
Younis
,
M. I.
,
2016
, “
An Investigation of the Static and Dynamic Behavior of Electrically Actuated Rectangular Microplates
,”
Int. J. Non-Linear Mech.
,
85
, pp.
81
93
.
31.
Saghir
,
S.
, and
Younis
,
M. I.
,
2016
, “
Approaches for Reduced-Order Modeling of Electrically Actuated Von-Karman Microplates
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011011
.
32.
Batra
,
R. C.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2007
, “
Review of Modeling Electrostatically Actuated Microelectromechanical Systems
,”
Smart Mater. Struct.
,
16
(
6
), pp.
R23
R31
.
33.
Batra
,
R. C.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2008
, “
Reduced-Order Models for Microelectromechanical Rectangular and Circular Plates Incorporating the Casimir Force
,”
Int. J. Solids Struct.
,
45
(
11–12
), pp.
3558
3583
.
34.
Wang
,
B.
,
Zhou
,
S.
,
Zhao
,
J.
, and
Chen
,
X.
,
2011
, “
Pull-In Instability Analysis of Electrostatically Actuated Microplate With Rectangular Shape
,”
Int. J. Precis. Eng. Manuf.
,
12
(
6
), pp.
1085
1094
.
35.
Vogl
,
G. W.
, and
Nayfeh
,
A. H.
,
2005
, “
A Reduced-Order Model for Electrically Actuated Clamped Circular Plates
,”
J. Micromech. Microeng.
,
15
(
4
), pp.
684
690
.
36.
Chen
,
C. S.
,
Cheng
,
W. S.
, and
Tan
,
A. H.
,
2005
, “
Non-Linear Vibration of Initially Stressed Plates With Initial Imperfections
,”
Thin-Walled Struct.
,
43
(
1
), pp.
33
45
.
37.
Lobitz
,
D.
,
Nayfeh
,
A.
, and
Mook
,
D.
,
1977
, “
Non-Linear Analysis of Vibrations of Irregular Plates
,”
J. Sound Vib.
,
50
(
2
), pp.
203
217
.
38.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
,
2005
, “
Dynamics of MEMS Resonators Under Superharmonic and Subharmonic Excitations
,”
J. Micromech. Microeng.
,
15
(
10
), p.
1840
.
39.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics
, Vol.
20
,
Springer
, New York.
40.
Liu
,
W.
, and
Yeh
,
F.
,
1993
, “
Non-Linear Vibrations of Initially Imperfect, Orthotropic, Moderately Thick Plates With Edge Restraints
,”
J. Sound Vib.
,
165
(
1
), pp.
101
122
.
41.
Amabili
,
M.
,
2006
, “
Theory and Experiments for Large-Amplitude Vibrations of Rectangular Plates With Geometric Imperfections
,”
J. Sound Vib.
,
291
(
3
), pp.
539
565
.
You do not currently have access to this content.