The converse flexoelectric effect, i.e., the polarization (or electric field) gradient-induced internal stress (or strain), can be utilized to actuate and control flexible structures. This study focuses on the microscopic actuation behavior and effectiveness of a flexoelectric actuator patch laminated on an elastic ring shell. An atomic force microscope (AFM) probe is placed on the upper surface of the flexoelectric patch to induce an inhomogeneous electric field resulting in internal stresses of the actuator patch. The flexoelectric stress-induced membrane control force and bending control moment regulate the ring vibration and their actuation mechanics, i.e., transverse and circumferential control actions, are, respectively, studied. For the transverse direction, the electric field gradient quickly decays along the ring thickness, resulting in a nonuniform transverse distribution of the induced stress, and this distribution profile is not influenced by the actuator thickness. The flexoelectric-induced circumferential membrane control force and bending control moment resemble the Dirac delta functions at the AFM contact point. The flexoelectric actuation can be regarded as a localized drastic bending to the ring. To evaluate the actuation effect, dynamic responses and controllable displacements of the elastic ring with flexoelectric actuations are analyzed with respect to design parameters, such as the flexoelectric patch thickness, AFM probe radius, ring thickness, and ring radius.

References

References
1.
Kogan
,
S. M.
,
1964
, “
Piezoelectric Effect During Inhomogeneous Deformation and Acoustic Scattering of Carriers in Crystals
,”
Sov. Phys. Solid State
,
5
(
10
), pp.
2069
2070
.
2.
Tagantsev
,
A. K.
,
1986
, “
Piezoelectricity and Flexoelectricity in Crystalline Dielectrics
,”
Phys. Rev. B
,
34
(
8
), pp.
5883
5889
.
3.
Todorov
,
A. T.
,
Petrov
,
A. G.
, and
Fendler
,
J. H.
,
1994
, “
First Observation of the Converse Flexoelectric Effect in Bilayer Lipid Membranes
,”
J. Chem. Phys.
,
98
(
12
), pp.
3076
3079
.
4.
Mindlin
,
R. D.
,
1969
, “
Continuum and Lattice Theories of Influence of Electromechanical Coupling on Capacitance of Thin Dielectric Films
,”
Int. J. Solids Struct.
,
5
(
11
), pp.
1197
1208
.
5.
Mindlin
,
R. D.
, and
Eshel
,
N. N.
,
1968
, “
On First Strain-Gradient Theories in Linear Elasticity
,”
Int. J. Solids Struct.
,
4
(
1
), pp.
109
124
.
6.
Sahin
,
E.
, and
Dost
,
S.
,
1988
, “
A Strain-Gradients Theory of Elastic Dielectrics With Spatial-Dispersion
,”
Int. J. Eng. Sci.
,
26
(
12
), pp.
1231
1245
.
7.
Cross
,
L. E.
,
2006
, “
Flexoelectric Effects: Charge Separation in Insulating Solids Subjected to Elastic Strain Gradients
,”
J. Mater. Sci.
,
41
(
1
), pp.
53
63
.
8.
Baskaran
,
S.
,
He
,
X.
, and
Chen
,
Q.
,
2011
, “
Experimental Studies on the Direct Flexoelectric Effect in α-Phase Polyvinylidene Fluoride Films
,”
Appl. Phys. Lett.
,
98
(
24
), p.
242901
.
9.
Fu
,
J. Y.
,
Zhu
,
W.
,
Li
,
N.
, and
Cross
,
L. E.
,
2006
, “
Experimental Studies of the Converse Flexoelectric Effect Induced by Inhomogeneous Electric Field in a Barium Strontium Titanate Composition
,”
J. Appl. Phys.
,
100
(
2
), p.
024112
.
10.
Agronin
,
A.
,
Molotskii
,
M.
,
Rosenwaks
,
Y.
,
Rosenman
,
G.
,
Rodriguez
,
B. J.
,
Kigon
,
A. I.
, and
Gruverman
,
A.
,
2006
, “
Dynamics of Ferroelectric Domain Growth in the Field of Atomic Force Microscope
,”
J. Appl. Phys.
,
99
(
10
), p.
104102
.
11.
Zubko
,
P.
,
Catalan
,
G.
,
Buckley
,
A.
,
Welche
,
P. R. L.
, and
Scott
,
J. F.
,
2007
, “
Strain-Gradient-Induced Polarization in SrTiO3 Single Crystals
,”
Phys. Rev. Lett.
,
99
(
16
), p.
167601
.
12.
Hu
,
S. D.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2013
, “
Flexoelectric Responses of Circular Rings
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
021003
.
13.
Rao
,
Z.
,
Hu
,
S. D.
, and
Tzou
,
H. S.
,
2011
, “
Diagonal Flexoelectric Sensor on Cylindrical Shell Substructure
,”
Symposium on Piezoelectricity, Acoustic Waves, and Device Applications
(
SPAWDA
), Shenzhen, China, Dec. 9–11, pp.
106
111
.
14.
Tzou
,
H. S.
, and
Zhang
,
X. F.
,
2016
, “
A Flexoelectric Double-Curvature Nonlinear Shell Energy Harvester
,”
ASME J. Vib. Acoust.
,
138
(
2
), p.
031006
.
15.
Hu
,
S. D.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2014
, “
Comparison of Flexoelectric and Piezoelectric Dynamic Signal Responses on Flexible Rings
,”
J. Intell. Mater. Syst. Struct.
,
25
(
7
), pp.
832
844
.
16.
Hu
,
S. D.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2011
, “
Static Nano-Control of Cantilever Beams Using the Inverse Flexoelectric Effect
,”
ASME
Paper No. IMECE2011-65123.
17.
Soedel
,
W.
,
1993
,
Vibrations of Shells and Plates
,
Marcel Dekker
,
New York
.
18.
Tzou
,
H. S.
,
Zhong
,
J. P.
, and
Natori
,
M. C.
,
1993
, “
Sensor Mechanics of Distributed Shell Convolving Sensors Applied to Flexible Rings
,”
ASME J. Vib. Acoust.
,
115
(
1
), pp.
40
46
.
19.
Tzou
,
H. S.
,
Zhong
,
J. P.
, and
Hollkamp
,
J. J.
,
1994
, “
Spatially Distributed Orthogonal Piezoelectric Shell Actuators: Theory and Applications
,”
J. Sound Vib.
,
177
(
3
), pp.
363
378
.
20.
Tzou
,
H. S.
,
1993
,
Piezoelectric Shells: Distributed Sensing & Control of Continua
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
21.
Abplanalp
,
M.
,
2001
, “
Piezoresponse Scanning Force Microscopy of Ferroelectric Domains
,” Ph.D. dissertation, Swiss Federal Institute of Technology, Zürich, Switzerland.
You do not currently have access to this content.