This paper presents a comprehensive comparison and analysis for the effect of time delay on the five most representative semi-active suspension control strategies, and refers to four unsolved problems related to semi-active suspension performance and delay mechanism that existed. Dynamic characteristics of a commercially available continuous damping control (CDC) damper were first studied, and a material test system (MTS) load frame was used to depict the velocity-force map for a CDC damper. Both inverse and boundary models were developed to determine dynamic characteristics of the damper. In addition, in order for an improper damper delay of the form t+τ to be corrected, a delay mechanism of controllable damper was discussed in detail. Numerical simulation for five control strategies, i.e., modified skyhook control SC, hybrid control (HC), COC, model reference sliding mode control (MRSMC), and integrated error neuro control (IENC), with three different time delays: 5 ms, 10 ms, and 15 ms was performed. Simulation results displayed that by changing control weights/variables, performance of all five control strategies varied from being ride comfort oriented to being road handling oriented. Furthermore, increase in delay time resulted in deterioration of both ride comfort and road handling. Specifically, ride comfort was affected more than road handling. The answers to all four questions were finally provided according to simulation results.

References

References
1.
Li
,
H.
,
Jing
,
X.
, and
Karimi
,
H. R.
,
2014
, “
Output-Feedback-Based H-inf Control for Vehicle Suspension Systems With Control Delay
,”
IEEE Trans. Ind. Electron.
,
61
(
1
), pp.
436
446
.
2.
Rath
,
J. J.
,
Defoort
,
M.
, and
Karimi
,
H.
,
R.
,
2017
, “
Output Feedback Active Suspension Control With Higher Order Terminal Sliding Mode
,”
IEEE Trans. Ind. Electron.
,
64
(
2
), pp.
1392
1403
.
3.
Zhao
,
F.
,
Ge
,
S.
, and
Tu
,
F.
,
2016
, “
Adaptive Neural Network Control for Active Suspension System With Actuator Saturation
,”
IET Control Theory Appl.
,
10
(
14
), pp.
1696
1705
.
4.
Sergio
,
M. S.
,
Charles
,
P. V.
, and
Cristiano
,
S.
,
2010
,
Semi-Active Suspension Control Design for Vehicles
,
Elsevier
, Oxford, UK.
5.
Karnopp
,
D.
,
Crosby
,
M. J.
, and
Harwood
,
R.
,
1974
, “
Vibration Control Using Semi-Active Force Generators
,”
J. Eng. Ind.
,
96
(
2
), pp.
619
626
.
6.
Nugroho
,
P. W.
,
Li
,
W.
, and
Du
,
H.
,
2014
, “
An Adaptive Neuro Fuzzy Hybrid Control Strategy for a Semiactive Suspension With Magneto Rheological Damper
,”
Advance in Mechanical Engineering
,
6
(2), p. 487312.
7.
Yi
,
K.
, and
Song
,
B.
,
1999
, “
A New Adaptive Sky-Hook Control of Vehicle Semi-Active Suspensions
,”
Proc. Inst. Mech. Eng. Part D
,
213
(
3
), pp.
293
303
.
8.
Savaresi
,
S. M.
,
Silani
,
E.
, and
Bittanti
,
S.
,
2005
, “
Acceleration-Driven-Damper (ADD): An Optimal Control Algorithm for Comfort-Oriented Semiactive Suspensions
,”
ASME J. Dyn. Syst. Meas. Control
,
127
(
2
), pp.
218
229
.
9.
Kashem
,
S. B. A.
,
Ektesabi
,
M.
, and
Nagarajah
,
R.
,
2012
, “
Comparison Between Different Sets of Suspension Parameters and Introduction of New Modified Skyhook Control Strategy Incorporating Varying Road Condition
,”
Veh. Syst. Dyn.
,
50
(
7
), pp.
1173
1190
.
10.
Ahmadian
,
M.
, and
Vahdati
,
N.
,
2006
, “
Transient Dynamics of Semiactive Suspensions With Hybrid Control
,”
J. Intell. Mater. Syst. Struct.
,
17
(
2
), pp.
145
153
.
11.
Nguyen
,
L. H.
,
Hong
,
K. S.
, and
Park
,
S.
,
2010
, “
Road-Frequency Adaptive Control for Semi-Active Suspension Systems
,”
Int. J. Control, Autom. Syst.
,
8
(
5
), pp.
1029
1038
.
12.
Hammes
,
S.
,
Krüger
,
J.
, and
Meyer
,
H. J.
,
2011
, “
Semi-Aktives Federungssystem für Hydropneumatisch Vollgefederte Traktoren
,”
LANDTECHNIK–Agric. Eng.
,
66
(
5
), pp.
377
380
.
13.
Valášek
,
M.
,
Novak
,
M.
,
Šika
,
Z.
, and
Vaculin
,
O.
,
1997
, “
Extended Ground-Hook-New Concept of Semi-Active Control of Truck's Suspension
,”
Veh. Syst. Dyn.
,
27
(
5–6
), pp.
289
303
.
14.
Koo
,
J. H.
,
Ahmadian
,
M.
, and
Setareh
,
M.
,
2004
, “
In Search of Suitable Control Methods for Semi-Active Tuned Vibration Absorbers
,”
J. Vib. Control
,
10
(
2
), pp.
163
174
.
15.
Ahmadian
,
M.
, and
Pare
,
C. A.
,
2000
, “
A Quarter-car Experimental Analysis of Alternative Semiactive Control Methods
,”
J. Intell. Mater. Syst. Struct.
,
11
(
8
), pp.
604
612
.
16.
Sankaranarayanan
,
V.
,
Emekli
,
M. E.
, and
Gilvenc
,
B.
,
2008
, “
Semiactive Suspension Control of a Light Commercial Vehicle
,”
IEEE/ASME Trans. Mechatron.
,
13
(
5
), pp.
598
604
.
17.
Qin
,
Y.
,
Dong
,
M.
,
Langari
,
R.
,
Gu
,
L.
, and
Guan
,
J.
,
2015
, “
Adaptive Hybrid Control of Vehicle Semiactive Suspension Based on Road Profile Estimation
,”
Shock Vib.
, 2015.
18.
Qin
,
Y.
,
Langari
,
R.
, and
Gu
,
L.
,
2014
, “
The Use of Vehicle Dynamic Response to Estimate Road Profile Input in Time Domain
,”
ASME
Paper No. DSCC2014-5978.
19.
Qin
,
Y.
,
Dong
,
M.
, and
Zhao
,
F.
,
2015
, “
Road Profile Classification for Vehicle Semi-Active Suspension System Based on Adaptive Neuro-Fuzzy Inference System
,”
IEEE Control Decision Conference
(
CDC
), Osaka, Japan, Dec. 15–18, pp.
1533
1538
.
20.
Wang
,
Z.
,
Dong
,
M.
, and
Qin
,
Y.
,
2016
, “
Suspension System State Estimation Using Adaptive Kalman Filtering Based on Road Classification
,”
Veh. Syst. Dyn.
,
55
(3), pp.
371
398
.
21.
Thompson
,
A.
,
1976
, “
An Active Suspension With Optimal Linear State Feedback
,”
Veh. Syst. Dyn.
,
5
(
4
), pp.
187
203
.
22.
Karnopp
,
D.
,
1983
, “
Active Damping in Road Vehicle Suspension Systems
,”
Veh. Syst. Dyn.
,
12
(
6
), pp.
291
311
.
23.
Tseng
,
H.
, and
Hedrick
,
J.
,
1994
, “
Semi-Active Control Laws-Optimal and Sub-Optimal
,”
Veh. Syst. Dyn.
,
23
(
1
), pp.
545
569
.
24.
Rawlings
,
J. B.
, and
Mayne
,
D. Q.
,
2009
,
Model Predictive Control: Theory and Design
,
Nob Hill Pub
, Madison, WI.
25.
Gordon
,
T. J.
, and
Sharp
,
R. S.
,
1998
, “
On Improving the Performance of Automotive Semi-Active Suspension Systems Through Road Preview
,”
J. Sound Vib.
,
217
(
1
), pp.
163
182
.
26.
Canale
,
M.
,
Milanese
,
M.
, and
Novara
,
C.
,
2006
, “
Semi-Active Suspension Control Using Fast Model-Predictive Techniques
,”
IEEE Trans. Control Syst. Technol.
,
14
(
6
), pp.
1034
1046
.
27.
Giorgetti
,
N.
,
Bemporad
,
A.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2005
,
Hybrid Model Predictive Control Application Towards Optimal Semi-Active Suspension
,
IEEE
,
New York
.
28.
Giorgetti
,
N.
,
Bemporad
,
A.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2006
, “
Hybrid Model Predictive Control Application Towards Optimal Semi-Active Suspension
,”
Int. J. Control
,
79
(
5
), pp.
521
533
.
29.
Schindler
,
A.
,
2009
,
Neue Konzeption und Erstmalige Realisierung Eines Aktiven Fahrwerks mit Preview-Strategie
,
KIT Scientific Publishing
, Karlsruhe, Germany.
30.
Sammier
,
D.
,
Sename
,
O.
, and
Dugard
,
L.
,
2003
, “
Skyhook and H8 Control of Semi-Active Suspensions: Some Practical Aspects
,”
Veh. Syst. Dyn.
,
39
(
4
), pp.
279
308
.
31.
Poussot
,
V. C.
,
Sename
,
O.
, and
Dugard
,
L.
,
2008
, “
A New Semi-Active Suspension Control Strategy Through LPV Technique
,”
Control Eng. Pract.
,
16
(
12
), pp.
1519
1534
.
32.
Yokoyama
,
M.
,
Hedrick
,
J. K.
, and
Toyama
,
S.
,
2001
, “
A Model Following Sliding Mode Controller for Semi-Active Suspension Systems With MR Dampers
,”
American Control Conference
, Arlington, VA, June 25–27, pp.
2652
2657
.
33.
Dong
,
X. M.
,
Yu
,
M.
,
Liao
,
C. R.
, and
Chen
,
W. M.
,
2010
, “
Comparative Research on Semi-Active Control Strategies for Magneto-Rheological Suspension
,”
Nonlinear Dyn.
,
59
(
3
), pp.
433
453
.
34.
Chen
,
B. C.
,
Shiu
,
Y. H.
, and
Hsieh
,
F. C.
,
2011
, “
Sliding-Mode Control for Semi-Active Suspension With Actuator Dynamics
,”
Veh. Syst. Dyn.
,
49
(
1–2
), pp.
277
290
.
35.
Meystel
,
A. M.
, and
Albus
,
J. S.
,
2000
,
Intelligent Systems: Architecture, Design, and Control
,
Wiley
,
New York
.
36.
Jin
,
Y.
, and
Yu
,
D. J.
,
2008
, “
Adaptive Neuron Control Using an Integrated Error Approach With Application to Active Suspensions
,”
Int. J. Autom. Technol.
,
9
(
3
), pp.
329
335
.
37.
Caponetto
,
R.
,
Diamante
,
O.
, and
Fargione
,
G.
,
2003
, “
A Soft Computing Approach to Fuzzy Sky-Hook Control of Semiactive Suspension
,”
IEEE Trans. Control Syst. Technol.
,
11
(
6
), pp.
786
798
.
38.
Liu
,
H.
,
Nonami
,
K.
, and
Hagiwara
,
T.
,
2008
, “
Active Following Fuzzy Output Feedback Sliding Mode Control of Real-Vehicle Semi-Active Suspensions
,”
J. Sound Vib.
,
314
(
1–2
), pp.
39
52
.
39.
Emanuele
,
G.
,
Tudor
,
S.
, and
Charles
,
W.
,
2008
,
Semi-Active Suspension Control: Improved Vehicle Ride and Road Friendliness
,
Springer-Verlag
,
London
.
40.
Bernd
,
H.
, and
Ersoy
,
M.
,
2011
,
The Chassis Handbook-Fundamentals, Driving Dynamics, Components, Mechatronics, Perspectives
,
Springer
,
Berlin
.
41.
Koo
,
J. H.
,
Goncalves
,
F. D.
, and
Ahmadian
,
M.
,
2006
, “
A Comprehensive Analysis of the Response Time of MR Dampers
,”
Smart Mater. Struct.
,
15
(
2
), p.
351
.
42.
Dong
,
X.
,
Yu
,
M.
,
Li
,
Z.
,
Liao
,
C.
, and
Chen
,
W.
,
2009
, “
Neural Network Compensation of Semi-Active Control for Magneto-Rheological Suspension With Time Delay Uncertainty
,”
Smart Mater. Struct.
,
18
(
1
), pp.
15
24
.
43.
Koo
,
J. H.
,
Goncalves
,
F. D.
, and
Ahmadian
,
M.
,
2010
, “
Investigation of the Response Time of Magnetorheological Fluid Dampers
,”
Smart Mater. Struct.
,
20
(
7
), pp.
63
71
.
44.
Hac
,
A.
, and
Youn
,
I.
,
1993
, “
Optimal Design of Active and Semi-Active Suspensions Including Time Delays and Preview
,”
Trans. ASME
,
115
(4), pp.
498
508
.
45.
Manfred
,
M.
, and
Wallentowitz
,
H.
,
2010
,
Vehicle Dynamics
,
TsingHua Press
,
Beijing, China
.
46.
Spencer
,
B.
,
Dyke
,
S.
,
Sain
,
M.
, and
Carlson
,
J.
,
1997
, “
Phenomenological Model for Magnetorheological Dampers
,”
J. Eng. Mech.
,
123
(
3
), pp.
230
238
.
47.
Guo
,
S.
,
Yang
,
S.
, and
Pan
,
C.
,
2006
, “
Dynamic Modeling of Magnetorheological Damper Behaviors
,”
J. Intell. Mater. Syst. Struct.
,
17
(
1
), pp.
3
14
.
48.
Kyle
,
C.
, and
Schurter
,
P. N. R.
,
2000
, “
Fuzzy Modeling of a Magnetorheological Damper Using ANFIS
,” The Ninth
IEEE
International Conference
, San Antonio, TX, May 7–10, Vol. 1, pp. 122–127.
49.
Song
,
X.
,
Ahmadian
,
M.
, and
Southward
,
S. C.
,
2005
, “
Modeling Magnetorheological Dampers With Application of Nonparametric Approach
,”
J. Intell. Mater. Syst. Struct.
,
16
(
5
), pp.
421
432
.
50.
Pellegrini
,
E.
,
2012
, “
Model-Based Damper Control for Semi-Active Suspension Systems
,”
Ph.D. dissertation
, Universität München, München, Germany.
51.
Song
,
X.
,
1999
, “
Design of Adaptive Vibration Control Systems With Application of Magneto-Rheological Dampers
,”
Ph.D. dissertation
, Virginia Polytechnic Institute and State University, Blacksburg, VA.
52.
Reichel
,
J.
,
2007
, “
Untersuchungen zum Einfluss Stufenlos Verstellbarer Schwingungsdämpfer auf das Instationäre Bremsen von Personenwagen
,” Ph.D. thesis, TU Darmstadt, Darmstadt, Germany.
53.
Elbeheiry
,
E. M.
, and
Karnopp
,
D. C.
,
1996
, “
Optimal Control of Vehicle Random Vibration With Constrained Suspension Deflection
,”
J. Sound Vib.
,
189
(
5
), pp.
547
564
.
54.
Gobbi
,
M.
, and
Mastinu
,
G.
,
2001
, “
Analytical Description and Optimization of the Dynamic Behavior of Passively Suspended Road Vehicles
,”
J. Sound Vib.
,
245
(
3
), pp.
457
481
.
55.
Turnip
,
A.
, and
Hong
,
K. S.
,
2013
, “
Road-Frequency Based Optimization of Damping Coefficients for Semi-Active Suspension Systems
,”
Int. J. Veh. Des.
,
63
(
1
), pp.
84
101
.
56.
ISO
,
1997
, “
Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-Body Vibration
,” Geneva, Switzerland, Standard No. ISO 2631.
57.
Hrovat
,
D.
,
1997
, “
Survey of Advanced Suspension Developments and Related Optimal Control Applications
,”
Automatica
,
33
(
10
), pp.
1781
1817
.
58.
Robson
,
J. D.
, and
Dodds
,
C. J.
,
1973
, “
The Description of Road Surface Roughness
,”
J. Sound Vib.
,
31
(2), pp.
175
183
.
59.
Sharp
,
R.
, and
Crolla
,
D.
,
1987
, “
Road Vehicle Suspension System Design—A Review
,”
Veh. Syst. Dyn.
,
16
(
3
), pp.
167
192
.
60.
Sharp
,
R.
, and
Peng
,
H.
,
2011
, “
Vehicle Dynamics Applications of Optimal Control Theory
,”
Veh. Syst. Dyn.
,
49
(
7
), pp.
1073
1111
.
61.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
, Upper Saddle River, NJ.
62.
ISO
,
1995
, “
Mechanical Vibration-Road Surface Profiles-Reporting of Measured Data
,” Geneva, Switzerland, Standard No. ISO 8608.
63.
Hong
,
K. S.
,
Sohn
,
H. C.
, and
Hedrick
,
J. K.
,
2002
, “
Modified Skyhook Control of Semi-Active Suspensions: A New Model, Gain Scheduling, and Hardware-in-the-Loop Tuning
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
1
), pp.
158
167
.
You do not currently have access to this content.