This paper presents an efficient impedance eduction method for grazing flow incidence tube by using a surrogating model along with the Wiener–Hopf method, which enables rapid acoustic predictions and effective impedance eductions over a range of parametric values and working conditions. The proposed method is demonstrated by comparing to the theoretical results, numerical predictions, and experimental measurements, respectively. All the demonstrations clearly suggest the capability and the potential of the proposed solver for parametric studies and optimizations of the lining methods.

References

1.
Eversman
,
W.
, and
Okunbor
,
D.
,
1998
, “
AFT Fan Duct Acoustic Radiation
,”
J. Sound Vib.
,
213
(
2
), pp.
235
257
.
2.
Richter
,
C.
,
Thiele
,
F. H.
,
Li
,
X.
, and
Zhuang
,
M.
,
2007
, “
Comparison of Time-Domain Impedance Boundary Conditions for Lined Duct Flows
,”
AIAA J.
,
45
(
6
), pp.
1333
1345
.
3.
Bianchi
,
S.
,
Corsini
,
A.
,
Rispoli
,
F.
, and
Sheard
,
A. G.
,
2011
, “
Far-Field Radiation of Tip Aerodynamic Sound Sources in Axial Fans Fitted With Passive Noise Control Features
,”
ASME J. Vib. Acoust.
,
133
(
5
), p.
051001
.
4.
Kakoty
,
S. K.
, and
Roy
,
V. K.
,
2006
, “
Bulk Reaction Modeling of Sound Propagation Through Circular Dissipative Ducts Backed by an Air Gap
,”
ASME J. Vib. Acoust.
,
128
(
6
), pp.
699
704
.
5.
Xin
,
F. X.
, and
Lu
,
T. J.
,
2016
, “
Acoustomechanical Constitutive Theory for Soft Materials
,”
Acta Mech. Sin.
,
32
(
5
), pp.
828
840
.
6.
Jones
,
M. G.
,
Watson
,
W. R.
,
Tracy
,
M. B.
, and
Parrott
,
T. L.
,
2004
, “
Comparison of Two Waveguide Methods for Educing Liner Impedance in Grazing Flow
,”
AIAA J.
,
42
(
2
), pp.
232
240
.
7.
Jones
,
M. G.
,
Watson
,
W. R.
, and
Parrott
,
T. L.
,
2005
, “
Benchmark Data for Evaluation of Aeroacoustic Propagation Codes With Grazing Flow
,”
AIAA
Paper No. 2005-2853.
8.
Watson
,
W. R.
,
Tanner
,
S. E.
, and
Parrott
,
T. L.
,
1998
, “
Optimization Method for Educing Variable-Impedance Liner Properties
,”
AIAA J.
,
36
(
1
), pp.
18
23
.
9.
Dean
,
P. D.
,
1974
, “
An In Situ Method of Wall Acoustic Impedance Measurement in Flow Ducts
,”
J. Sound Vib.
,
34
(
1
), pp.
IN5
130–IN6
.
10.
Bogey
,
C.
,
Bailly
,
C.
, and
Juvé
,
D.
,
2002
, “
Computation of Flow Noise Using Source Terms in Linearized Euler's Equations
,”
AIAA J.
,
40
(
2
), pp.
235
243
.
11.
Huang
,
X.
,
Chen
,
X. X.
,
Ma
,
Z. K.
, and
Zhang
,
X.
,
2008
, “
Efficient Computation of Spinning Modal Radiation Through an Engine Bypass Duct
,”
AIAA J.
,
46
(
6
), pp.
1413
1423
.
12.
Chen
,
X. X.
,
Huang
,
X.
, and
Zhang
,
X.
,
2009
, “
Sound Radiation From a Bypass Duct With Bifurcations
,”
AIAA J.
,
47
(
2
), pp.
429
436
.
13.
Elnady
,
T.
,
Bodén
,
H.
, and
Elhadidi
,
B.
,
2009
, “
Validation of an Inverse Semi-Analytical Technique to Educe Liner Impedance
,”
AIAA J.
,
47
(
12
), pp.
2836
2844
.
14.
Ko
,
S.-H.
,
1972
, “
Sound Attenuation in Acoustically Lined Circular Ducts in the Presence of Uniform Flow and Shear Flow
,”
J. Sound Vib.
,
22
(
2
), pp.
193
210
.
15.
Wisse
,
C. J.
,
Smeulders
,
D. M. J.
,
Van Dongen
,
M. E. H.
, and
Chao
,
G.
,
2002
, “
Guided Wave Modes in Porous Cylinders: Experimental Results
,”
J. Acoust. Soc. Am.
,
112
(
3
), pp.
890
895
.
16.
Noble
,
B.
,
1958
,
Methods Based on the Wiener–Hopf Technique for the Solution of Partial Differential Equations
,
Pergamon Press
, Oxford, UK, pp.
48
61
.
17.
Munt
,
R. M.
,
1977
, “
The Interaction of Sound With a Subsonic Jet Issuing From a Semi-Infinite Cylindrical Pipe
,”
J. Fluid Mech.
,
83
(
4
), pp.
609
640
.
18.
Gabard
,
G.
, and
Astley
,
R. J.
,
2006
, “
Theoretical Model for Sound Radiation From Annular Jet Pipes: Far- and Near-Field Solutions
,”
J. Fluid Mech.
,
549
, pp.
315
341
.
19.
Rienstra
,
S. W.
,
2007
, “
Acoustic Scattering at a Hard–Soft Lining Transition in a Flow Duct
,”
J. Eng. Math.
,
59
(
4
), pp.
451
475
.
20.
Koch
,
W.
, and
Möhring
,
W.
,
1983
, “
Eigensolutions for Liners in Uniform Mean Flow Ducts
,”
AIAA J.
,
21
(
2
), pp.
200
213
.
21.
Liu
,
X.
,
Jiang
,
H. B.
,
Huang
,
X.
, and
Chen
,
S.
,
2016
, “
Theoretical Model of Scattering From Flow Ducts With Semi-Infinite Axial Liner Splices
,”
J. Fluid Mech.
,
786
, pp.
62
83
.
22.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
,
2009
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
, Hoboken, NJ, Chap. 1.
23.
Eversman
,
W.
,
1973
, “
Approximation for Thin Boundary Layers in the Sheared Flow Duct Transmission Problem
,”
J. Acoust. Soc. Am.
,
53
(
5
), pp.
1346
1350
.
24.
Ingard
,
U.
,
1959
, “
Influence of Fluid Motion Past a Plane Boundary on Sound Reflection, Absorption, and Transmission
,”
J. Acoust. Soc. Am.
,
31
(
7
), pp.
1035
1036
.
25.
Myers
,
M.
,
1980
, “
On the Acoustic Boundary Condition in the Presence of Flow
,”
J. Sound Vib.
,
71
(
3
), pp.
429
434
.
26.
Burak
,
M. O.
,
Billson
,
M.
,
Eriksson
,
L. E.
, and
Baralon
,
S.
,
2009
, “
Validation of a Time-and Frequency-Domain Grazing Flow Acoustic Liner Model
,”
AIAA J.
,
47
(
8
), pp.
1841
1848
.
27.
Rienstra
,
S. W.
, and
Darau
,
M.
,
2011
, “
Boundary-Layer Thickness Effects of the Hydrodynamic Instability Along an Impedance Wall
,”
J. Fluid Mech.
,
671
, pp.
559
573
.
28.
Liu
,
X.
,
Huang
,
X.
, and
Zhang
,
X.
,
2014
, “
Stability Analysis and Design of Time-Domain Acoustic Impedance Boundary Conditions for Lined Duct With Mean Flow
,”
J. Acoust. Soc. Am.
,
136
(
5
), pp.
2441
2452
.
29.
Zhong
,
S. Y.
,
Huang
,
X.
, and
Zhang
,
X.
,
2016
, “
A Controllable Canonical Form of Time Domain Impedance Boundary Condition for Broadband Aeroacoustics Computation
,”
J. Comput. Phys.
,
313
, pp.
713
725
.
30.
Rienstra
,
S. W.
, and
Eversman
,
W.
,
2001
, “
A Numerical Comparison Between the Multiple-Scales and Finite-Element Solution for Sound Propagation in Lined Flow Ducts
,”
J. Fluid Mech.
,
437
, pp.
367
384
.
31.
Rienstra
,
S. W.
,
1984
, “
Acoustic Radiation From a Semi-Infinite Annular Duct in a Uniform Subsonic Mean Flow
,”
J. Sound Vib.
,
94
(
2
), pp.
267
288
.
You do not currently have access to this content.