This paper presents an efficient impedance eduction method for grazing flow incidence tube by using a surrogating model along with the Wiener–Hopf method, which enables rapid acoustic predictions and effective impedance eductions over a range of parametric values and working conditions. The proposed method is demonstrated by comparing to the theoretical results, numerical predictions, and experimental measurements, respectively. All the demonstrations clearly suggest the capability and the potential of the proposed solver for parametric studies and optimizations of the lining methods.
Issue Section:
Research Papers
References
1.
Eversman
, W.
, and Okunbor
, D.
, 1998
, “AFT Fan Duct Acoustic Radiation
,” J. Sound Vib.
, 213
(2
), pp. 235
–257
.2.
Richter
, C.
, Thiele
, F. H.
, Li
, X.
, and Zhuang
, M.
, 2007
, “Comparison of Time-Domain Impedance Boundary Conditions for Lined Duct Flows
,” AIAA J.
, 45
(6
), pp. 1333
–1345
.3.
Bianchi
, S.
, Corsini
, A.
, Rispoli
, F.
, and Sheard
, A. G.
, 2011
, “Far-Field Radiation of Tip Aerodynamic Sound Sources in Axial Fans Fitted With Passive Noise Control Features
,” ASME J. Vib. Acoust.
, 133
(5
), p. 051001
.4.
Kakoty
, S. K.
, and Roy
, V. K.
, 2006
, “Bulk Reaction Modeling of Sound Propagation Through Circular Dissipative Ducts Backed by an Air Gap
,” ASME J. Vib. Acoust.
, 128
(6
), pp. 699
–704
.5.
Xin
, F. X.
, and Lu
, T. J.
, 2016
, “Acoustomechanical Constitutive Theory for Soft Materials
,” Acta Mech. Sin.
, 32
(5
), pp. 828
–840
.6.
Jones
, M. G.
, Watson
, W. R.
, Tracy
, M. B.
, and Parrott
, T. L.
, 2004
, “Comparison of Two Waveguide Methods for Educing Liner Impedance in Grazing Flow
,” AIAA J.
, 42
(2
), pp. 232
–240
.7.
Jones
, M. G.
, Watson
, W. R.
, and Parrott
, T. L.
, 2005
, “Benchmark Data for Evaluation of Aeroacoustic Propagation Codes With Grazing Flow
,” AIAA
Paper No. 2005-2853. 8.
Watson
, W. R.
, Tanner
, S. E.
, and Parrott
, T. L.
, 1998
, “Optimization Method for Educing Variable-Impedance Liner Properties
,” AIAA J.
, 36
(1
), pp. 18
–23
.9.
Dean
, P. D.
, 1974
, “An In Situ Method of Wall Acoustic Impedance Measurement in Flow Ducts
,” J. Sound Vib.
, 34
(1
), pp. IN5
–130–IN6
.10.
Bogey
, C.
, Bailly
, C.
, and Juvé
, D.
, 2002
, “Computation of Flow Noise Using Source Terms in Linearized Euler's Equations
,” AIAA J.
, 40
(2
), pp. 235
–243
.11.
Huang
, X.
, Chen
, X. X.
, Ma
, Z. K.
, and Zhang
, X.
, 2008
, “Efficient Computation of Spinning Modal Radiation Through an Engine Bypass Duct
,” AIAA J.
, 46
(6
), pp. 1413
–1423
.12.
Chen
, X. X.
, Huang
, X.
, and Zhang
, X.
, 2009
, “Sound Radiation From a Bypass Duct With Bifurcations
,” AIAA J.
, 47
(2
), pp. 429
–436
.13.
Elnady
, T.
, Bodén
, H.
, and Elhadidi
, B.
, 2009
, “Validation of an Inverse Semi-Analytical Technique to Educe Liner Impedance
,” AIAA J.
, 47
(12
), pp. 2836
–2844
.14.
Ko
, S.-H.
, 1972
, “Sound Attenuation in Acoustically Lined Circular Ducts in the Presence of Uniform Flow and Shear Flow
,” J. Sound Vib.
, 22
(2
), pp. 193
–210
.15.
Wisse
, C. J.
, Smeulders
, D. M. J.
, Van Dongen
, M. E. H.
, and Chao
, G.
, 2002
, “Guided Wave Modes in Porous Cylinders: Experimental Results
,” J. Acoust. Soc. Am.
, 112
(3
), pp. 890
–895
.16.
Noble
, B.
, 1958
, Methods Based on the Wiener–Hopf Technique for the Solution of Partial Differential Equations
, Pergamon Press
, Oxford, UK, pp. 48
–61
.17.
Munt
, R. M.
, 1977
, “The Interaction of Sound With a Subsonic Jet Issuing From a Semi-Infinite Cylindrical Pipe
,” J. Fluid Mech.
, 83
(4
), pp. 609
–640
.18.
Gabard
, G.
, and Astley
, R. J.
, 2006
, “Theoretical Model for Sound Radiation From Annular Jet Pipes: Far- and Near-Field Solutions
,” J. Fluid Mech.
, 549
, pp. 315
–341
.19.
Rienstra
, S. W.
, 2007
, “Acoustic Scattering at a Hard–Soft Lining Transition in a Flow Duct
,” J. Eng. Math.
, 59
(4
), pp. 451
–475
.20.
Koch
, W.
, and Möhring
, W.
, 1983
, “Eigensolutions for Liners in Uniform Mean Flow Ducts
,” AIAA J.
, 21
(2
), pp. 200
–213
.21.
Liu
, X.
, Jiang
, H. B.
, Huang
, X.
, and Chen
, S.
, 2016
, “Theoretical Model of Scattering From Flow Ducts With Semi-Infinite Axial Liner Splices
,” J. Fluid Mech.
, 786
, pp. 62
–83
.22.
Myers
, R. H.
, Montgomery
, D. C.
, and Anderson-Cook
, C. M.
, 2009
, Response Surface Methodology: Process and Product Optimization Using Designed Experiments
, Wiley
, Hoboken, NJ, Chap. 1.23.
Eversman
, W.
, 1973
, “Approximation for Thin Boundary Layers in the Sheared Flow Duct Transmission Problem
,” J. Acoust. Soc. Am.
, 53
(5
), pp. 1346
–1350
.24.
Ingard
, U.
, 1959
, “Influence of Fluid Motion Past a Plane Boundary on Sound Reflection, Absorption, and Transmission
,” J. Acoust. Soc. Am.
, 31
(7
), pp. 1035
–1036
.25.
Myers
, M.
, 1980
, “On the Acoustic Boundary Condition in the Presence of Flow
,” J. Sound Vib.
, 71
(3
), pp. 429
–434
.26.
Burak
, M. O.
, Billson
, M.
, Eriksson
, L. E.
, and Baralon
, S.
, 2009
, “Validation of a Time-and Frequency-Domain Grazing Flow Acoustic Liner Model
,” AIAA J.
, 47
(8
), pp. 1841
–1848
.27.
Rienstra
, S. W.
, and Darau
, M.
, 2011
, “Boundary-Layer Thickness Effects of the Hydrodynamic Instability Along an Impedance Wall
,” J. Fluid Mech.
, 671
, pp. 559
–573
.28.
Liu
, X.
, Huang
, X.
, and Zhang
, X.
, 2014
, “Stability Analysis and Design of Time-Domain Acoustic Impedance Boundary Conditions for Lined Duct With Mean Flow
,” J. Acoust. Soc. Am.
, 136
(5
), pp. 2441
–2452
.29.
Zhong
, S. Y.
, Huang
, X.
, and Zhang
, X.
, 2016
, “A Controllable Canonical Form of Time Domain Impedance Boundary Condition for Broadband Aeroacoustics Computation
,” J. Comput. Phys.
, 313
, pp. 713
–725
.30.
Rienstra
, S. W.
, and Eversman
, W.
, 2001
, “A Numerical Comparison Between the Multiple-Scales and Finite-Element Solution for Sound Propagation in Lined Flow Ducts
,” J. Fluid Mech.
, 437
, pp. 367
–384
.31.
Rienstra
, S. W.
, 1984
, “Acoustic Radiation From a Semi-Infinite Annular Duct in a Uniform Subsonic Mean Flow
,” J. Sound Vib.
, 94
(2
), pp. 267
–288
.Copyright © 2017 by ASME
You do not currently have access to this content.