Locally resonant metamaterials (LRMs) controlling low-frequency waves due to resonant scattering are usually characterized by narrow band gaps (BGs) and a poor wave filtering performance. To remedy this shortcoming, multiresonant metamaterial structures with closely located BGs have been proposed and widely studied. However, the analysis is generally limited to two-dimensional (2D) structures neglecting the finite height of any real resonator. The aim of this paper is the comparison of the wave dispersion for two- and three-dimensional (3D) metamaterial models and evaluation of the applicability ranges of 2D results. Numerical study reveals that dual-resonant structures with cylindrical inclusions possess only a single (compared to two in the 2D case) BG for certain height-to-width ratios. In contrast, the wave dispersion in metamaterials with multiple spherical resonators can be accurately evaluated using a 2D approximation, enabling a significant simplification of resource-consuming 3D models.

References

References
1.
Molerón
,
M.
, and
Daraio
,
C.
,
2015
, “
Acoustic Metamaterial for Subwavelength Edge Detection
,”
Nat. Commun.
,
6
, p.
8037
.
2.
Miniaci
,
M.
,
Krushynska
,
A.
,
Bosia
,
F.
, and
Pugno
,
N.
,
2016
, “
Large Scale Mechanical Metamaterials as Seismic Shields
,”
New J. Phys.
,
18
(
8
), p.
083041
.
3.
Zigoneanu
,
L.
,
Popa
,
B.-I.
, and
Cummer
,
S.
,
2014
, “
Three-Dimensional Broadband Omnidirectional Acoustic Ground Cloak
,”
Nat. Mater.
,
13
(
4
), pp.
352
355
.
4.
Larabi
,
H.
,
Pennec
,
Y.
,
Djafari-Rouhani
,
B.
, and
Vasseur
,
J. O.
,
2007
, “
Multicoaxial Cylindrical Inclusions in Locally Resonant Phononic Crystals
,”
Phys. Rev. E
,
75
(
6
), p.
066601
.
5.
Tan
,
K.
,
Huang
,
H.
, and
Sun
,
C.
,
2014
, “
Blast-Wave Impact Mitigation Using Negative Effective Mass Density Concept of Elastic Metamaterials
,”
Int. J. Impact Eng.
,
64
, pp.
20
29
.
6.
Chen
,
Y.
,
Barnhart
,
M.
,
Chen
,
J.
,
Hu
,
G.
,
Sun
,
C.
, and
Huang
,
G.
,
2016
, “
Dissipative Elastic Metamaterials for Broadband Wave Mitigation at Subwavelength Scale
,”
Compos. Struct.
,
136
, pp.
358
371
.
7.
Zhu
,
R.
,
Liu
,
X.
,
Hub
,
G.
,
Sun
,
C.
, and
Huang
,
G.
,
2014
, “
A Chiral Elastic Metamaterial Beam for Broad Band Vibration Suppression
,”
J. Sound Vib.
,
333
(
10
), pp.
2759
2773
.
8.
Elford
,
D.
,
Chalmers
,
L.
,
Kusmartsev
,
F.
, and
Swallowe
,
G.
,
2011
, “
Matryoshka Locally Resonant Sonic Crystal
,”
J. Acoust. Soc. Am.
,
130
(
5
), pp.
2746
2755
.
9.
Krödel
,
S.
,
Thomé
,
N.
, and
Daraio
,
C.
,
2015
, “
Wide Band-Gap Seismic Metastructures
,”
Extreme Mech. Lett.
,
4
, pp.
111
117
.
10.
Khelif
,
A.
,
Aoubiza
,
B.
,
Mohammadi
,
S.
,
Adibi
,
A.
, and
Laude
,
V.
,
2006
, “
Complete Band Gaps in Two-Dimensional Phononic Crystal Slabs
,”
Phys. Rev. E
,
74
(
4
), p.
046610
.
11.
Liu
,
Z.
,
Chan
,
C.
, and
Sheng
,
P.
,
2005
, “
Analytic Model of Phononic Crystals With Local Resonances
,”
Phys. Rev. B
,
71
(
1
), p.
014103
.
12.
Hirsekorn
,
M.
,
Delsanto
,
P.
,
Leung
,
A.
, and
Matic
,
P.
,
2006
, “
Elastic Wave Propagation in Locally Resonant Sonic Material: Comparison Between Local Interaction Simulation Approach and Modal Analysis
,”
J. Appl. Phys.
,
99
(
12
), p.
124912
.
13.
Hussein
,
M.
,
Leamy
,
M.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
14.
Krushynska
,
A.
,
Kouznetsova
,
V.
, and
Geers
,
M.
,
2014
, “
Towards Optimal Design of Locally Resonant Acoustic Metamaterials
,”
J. Mech. Phys. Solids
,
71
, pp.
179
196
.
You do not currently have access to this content.