Annular labyrinth seals often have a destabilizing effect on pump rotordynamics due to the large cross-coupled forces generated when the fluid is squeezed by an oscillating rotor. In this study, several novel groove geometries are investigated for their effect on the rotordynamic coefficients of the labyrinth seal. The groove cavity geometry of a baseline 267 mm balance drum labyrinth seal with a clearance of 0.305 mm and 20 equally spaced groove cavities was optimized for minimum leakage. From the pool of possible groove designs analyzed, nine test cases were selected for maximum or minimum leakage and for a variety of groove cavity shapes. The rotordynamic coefficients were calculated for these cases using a hybrid computational fluid dynamics (CFD) bulk-flow method. The rotordynamic coefficients obtained by this method were then used with a rotordynamic model of the entire pump to determine the overall stability. Results show that labyrinth seal’s groove shape can be optimized to generate lower leakage rates, while the effects on dynamic properties are only minimally changed. If the seal dynamic response needs to be modified in addition to targeting a lower leakage rate, for instance, to exhibit increased damping values, then the leakage rate and the damping coefficient need to be set as objective functions in the optimization loop.

References

References
1.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics
,
Wiley
,
New York
.
2.
Moore
,
J. J.
, and
Palazzolo
,
A. B.
,
2001
, “
Rotordynamic Force Prediction of Whirling Centrifugal Impeller Shroud Passages Using Computational Fluid Dynamic Techniques
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
910
918
.
3.
Arghir
,
M.
, and
Frene
,
J.
,
1997
, “
Rotordynamic Coefficients of Circumferentially-Grooved Liquid Seals Using the Averaged Navier-Stokes Equations
,”
ASME J. Tribol.
,
119
(
3
), pp.
556
567
.
4.
Untaroiu
,
A.
,
Untaroiu
,
C. D.
,
Wood
,
H. G.
, and
Allaire
,
P. E.
,
2013
, “
Numerical Modeling of Fluid-Induced Rotordynamic Forces in Seals With Large Aspect Ratios
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012501
.
5.
Tam
,
L. T.
,
Przekwas
,
A. J.
,
Muszynska
,
A.
,
Hendricks
,
R. C.
,
Braun
,
M. J.
, and
Mullen
,
R. L.
,
1988
, “
Numerical and Analytical Study of Fluid Dynamic Forces in Seals and Bearings
,”
ASME J. Vib. Acoust.
,
110
(
3
), pp.
315
325
.
6.
Morgan
,
N.
,
Untaroiu
,
A.
,
Migliorini
,
P. J.
, and
Wood
,
H. G.
,
2015
, “
Design of Experiments to Investigate Geometric Effects on Fluid Leakage Rate in a Balance Drum Seal
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032501
.
7.
Untaroiu
,
A.
,
Hayrapetian
,
V.
,
Untaroiu
,
C. D.
,
Wood
,
H. G.
,
Schiavello
,
B.
, and
McGuire
,
J.
,
2013
, “
On the Dynamic Properties of Pump Liquid Seals
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051104
.
8.
Morgan
,
N. R.
,
Wood
,
H. G.
, and
Untaroiu
,
A.
,
2016
, “
Design of Experiments to Investigate Geometric Effects on Fluid Leakage Rate in a Balance Drum Seal
,”
ASME J. Gas Turbine Power
,
138
(
7
), p.
072506
.
9.
Migliorini
,
P. J.
,
Untaroiu
,
A.
,
Wood
,
H. G.
, and
Allaire
,
P. E.
,
2012
, “
A CFD/Bulk-Flow Hybrid Method for Determining Rotordynamic Coefficients of Annular Gas Seals
,”
ASME J. Tribol.
,
134
(
2
), p.
022202
.
10.
Migliorini
,
P. J.
,
Untaroiu
,
A.
,
Witt
,
C. W.
,
Neal
,
N. R.
, and
Wood
,
H. G.
,
2014
, “
Hybrid Analysis of Gas Annular Seals With Energy Equation
,”
ASME J. Tribol.
,
136
(
3
), p.
031704
.
11.
Draper
,
N. R.
, and
Smith
,
H.
,
1998
,
Applied Regression Analysis
,
3rd ed.
,
Wiley
,
New York
.
12.
Fisher
,
R. A.
,
1974
,
Design of Experiments
,
Haffner Press
,
New York
.
13.
Deming
,
S. N.
, and
Morgan
,
S. L.
,
1993
,
Experimental Design: A Chemometric Approach
,
Elsevier
,
Amsterdam, The Netherlands
.
14.
Box
,
G. E. P.
,
Hunter
,
J. S.
, and
Hunter
,
W. G.
,
2005
,
Statistics for Experimenters. Design, Innovation, and Discovery
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.