A nonlinear energy sink (NES) approach is proposed for whole-spacecraft vibration reduction. Frequency sweeping tests are conducted on a scaled whole-spacecraft structure without or with a NES attached. The experimental transmissibility results demonstrate the significant reduction of the whole-spacecraft structure vibration over a broad spectrum of excitation frequency. The NES attachment hardly changes the natural frequencies of the structure. A finite element model is developed, and the model is verified by the experimental results. A two degrees-of-freedom (DOF) equivalent model of the scaled whole-spacecraft is proposed with the two same natural frequencies as those obtained via the finite element model. The experiment, the finite element model, and the equivalent model predict the same trends that the NES vibration reduction performance becomes better for the increasing NES mass, the increasing NES viscous damping, and the decreasing nonlinear stiffness. The energy absorption measure and the energy transition measure calculated based on the equivalent model reveals that an appropriately designed NES can efficiently absorb and dissipate broadband-frequency energy via nonlinear beats, irreversible targeted energy transfer (TET), or both for different parameters.

References

References
1.
Remedia
,
M.
,
Aglietti
,
G. S.
, and
Richardson
,
G.
,
2015
, “
Modelling the Effect of Electrical Harness on Microvibration Response of Structures
,”
Acta Astronaut.
,
109
, pp.
88
102
.
2.
Liu
,
L. K.
, and
Zheng
,
G. T.
,
2007
, “
Parameter Analysis of PAF for Whole-Spacecraft Vibration Isolation
,”
Aerosp. Sci. Technol.
,
11
(
6
), pp.
464
472
.
3.
Wilke
,
P. S.
,
Johnson
,
C. D.
, and
Fosness
,
E. R.
,
1998
, “
Whole-Spacecraft Passive Launch Isolation
,”
J. Spacecr. Rockets
,
35
(
5
), pp.
690
694
.
4.
Johnson
,
C. D.
,
Wilke
,
P. S.
, and
Darling
,
K. R.
,
2001
, “
Multi-Axis Whole-Spacecraft Vibration Isolation for Small Launch Vehicles
,”
Proc. SPIE
,
4331
, pp.
153
161
.
5.
Chen
,
T.
,
Wen
,
H.
,
Hu
,
H.
, and
Jin
,
D.
,
2016
, “
Output Consensus and Collision Avoidance of a Team of Flexible Spacecraft for On-Orbit Autonomous Assembly
,”
Acta Astronaut.
,
121
, pp.
271
281
.
6.
Takezawa
,
A.
,
Makihara
,
K.
,
Kogiso
,
N.
, and
Kitamura
,
M.
,
2014
, “
Layout Optimization Methodology of Piezoelectric Transducers in Energy-Recycling Semi-Active Vibration Control Systems
,”
J. Sound Vib.
,
333
(
2
), pp.
327
344
.
7.
Tang
,
J.
,
Liu
,
B.
,
Fang
,
J.
, and
Ge
,
S. S.
,
2013
, “
Suppression of Vibration Caused by Residual Unbalance of Rotor for Magnetically Suspended Flywheel
,”
J. Vib. Control
,
19
(
13
), pp.
1962
1979
.
8.
Zhang
,
Y.
,
Zhang
,
J. R.
, and
Zhai
,
G.
,
2013
, “
Vibration Isolation Platform With Multiple Tuned Mass Dampers for Reaction Wheel on Satellites
,”
Math. Probl. Eng.
,
2013
(
1
), pp.
14
26
.
9.
Zhang
,
Y.
,
Zhang
,
J. R.
, and
Xu
,
S. J.
,
2012
, “
Parameters Design of Vibration Isolation Platform for Control Moment Gyroscopes
,”
Acta Astronaut.
,
81
(
2
), pp.
645
659
.
10.
Li
,
H.
,
Li
,
H. Y.
,
Chen
,
Z. B.
, and
Tzou
,
H. S.
,
2016
, “
Experiments on Active Precision Isolation With a Smart Conical Adapter
,”
J. Sound Vib.
,
374
, pp.
17
28
.
11.
Zhang
,
Y.
, and
Zhang
,
J. R.
,
2013
, “
Combined Control of Fast Attitude Maneuver and Stabilization for Large Complex Spacecraft
,”
Acta Mech. Sin.
,
29
(
6
), pp.
875
882
.
12.
Evert
,
M. E.
,
Janzen
,
P. C.
,
Anderson
,
E. H.
,
Gerhart
,
C. M.
, and
Henderson
,
B. K.
,
2004
, “
Active Vibration Isolation System for Launch Load Alleviation
,”
Smart Structures and Materials
,
Proc. SPIE
,
5388
, pp.
62
77
.
13.
Hu
,
Q. L.
, and
Ma
,
G. F.
,
2005
, “
Spacecraft Vibration Suppression Using Variable Structure Output Feedback Control and Smart Materials
,”
ASME J. Vib. Acoust.
,
128
(
2
), pp.
221
230
.
14.
Fei
,
H. Z.
,
Zheng
,
G. T.
, and
Liu
,
Z. G.
,
2006
, “
An Investigation Into Active Vibration Isolation Based on Predictive Control: Part I: Energy Source Control
,”
J. Sound Vib.
,
296
(
1
), pp.
195
208
.
15.
Jarosh
,
J. R.
,
Agnes
,
G. S.
, and
Karahalis
,
G. G.
,
2001
, “
Adaptive Control for Payload Launch Vibration Isolation
,”
Proc. SPIE
,
2001
, pp.
162
174
.
16.
Adelstein
,
B. D.
,
Kaiser
,
M. K.
,
Beutter
,
B. R.
,
Mccann
,
R. S.
, and
Anderson
,
M. R.
,
2013
, “
Display Strobing: An Effective Countermeasure Against Visual Blur From Whole-Body Vibration
,”
Acta Astronaut.
,
92
(
1
), pp.
53
64
.
17.
Liu
,
L. K.
,
Zheng
,
G. T.
, and
Huang
,
W. H.
,
2006
, “
Octo-Strut Vibration Isolation Platform and Its Application to Whole Spacecraft Vibration Isolation
,”
J. Sound Vib.
,
289
(
4
), pp.
726
744
.
18.
Liu
,
L. K.
,
Liang
,
L.
,
Zheng
,
G. T.
, and
Huang
,
W. H.
,
2005
, “
Dynamic Design of Octostrut Platform for Launch Stage Whole-Spacecraft Vibration Isolation
,”
J. Spacecr. Rockets
,
42
(
4
), pp.
654
662
.
19.
Song
,
G.
, and
Agrawal
,
B. N.
,
2001
, “
Vibration Suppression of Flexible Spacecraft During Attitude Control
,”
Acta Astronaut.
,
49
(
2
), pp.
73
83
.
20.
Zheng
,
G. T.
,
2003
, “
Parametric Studies of the Whole Spacecraft Vibration Isolation
,”
AIAA J.
,
41
(
9
), pp.
1839
1841
.
21.
Hu
,
Q.
,
Cao
,
J.
, and
Zhang
,
Y.
,
2015
, “
Robust Backstepping Sliding Mode Attitude Tracking and Vibration Damping of Flexible Spacecraft With Actuator Dynamics
,”
J. Aerosp. Eng.
,
22
(
2
), pp.
139
152
.
22.
Zhang
,
Y. W.
,
Fang
,
B.
, and
Zang
,
J.
,
2015
, “
Dynamic Features of Passive Whole-Spacecraft Vibration Isolation Platform Based on Non-Probabilistic Reliability
,”
J. Vib. Control
,
21
(
1
), pp.
60
67
.
23.
Tan
,
L. J.
,
Fang
,
B.
,
Zhang
,
J. J.
, and
Huang
,
W. H.
,
2013
, “
Nonlinear Dynamic Analysis for the New Whole-Spacecraft Passive Vibration Isolator
,”
Appl. Mech. Mater.
,
300–301
, pp.
1231
1234
.
24.
Gendelman
,
O.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
M'Closkey
,
R.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators I: Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
34
41
.
25.
Vakakis
,
A. F.
,
2001
, “
Inducing Passive Nonlinear Energy Sinks in Linear Vibrating Systems
,”
ASME J. Vib. Acoust.
,
123
(
3
), pp.
324
332
.
26.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators II: Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.
27.
Vakakis
,
A. F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
,
Manevitch
,
L. I.
, and
Gendelman
,
O.
,
2004
, “
Isolated Resonance Captures and Resonance Capture Cascades Leading to Single-or Multi-Mode Passive Energy Pumping in Damped Coupled Oscillators
,”
ASME J. Vib. Acoust.
,
126
(
2
), pp.
235
244
.
28.
Vakakis
,
A. F.
,
Manevitch
,
L. I.
,
Gendelman
,
O.
, and
Bergman
,
L. A.
,
2003
, “
Dynamics of Linear Discrete Systems Connected to Local, Essentially Nonlinear Attachments
,”
J. Sound Vib.
,
264
(
3
), pp.
559
577
.
29.
Manevitch
,
L. I.
,
2013
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Analytical Study
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041011
.
30.
Kerschen
,
G.
,
Kowtko
,
J. J.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2007
, “
Theoretical and Experimental Study of Multimodal Targeted Energy Transfer in a System of Coupled Oscillators
,”
Nonlinear Dyn.
,
47
(
1–3
), pp.
285
309
.
31.
Manevitch
,
L. I.
,
Gourdon
,
E.
, and
Lamarque
,
C. H.
,
2007
, “
Towards the Design of an Optimal Energetic Sink in a Strongly Inhomogeneous Two-Degree-of-Freedom System
,”
ASME J. Appl. Mech.
,
74
(
6
), pp.
1078
1086
.
32.
Nucera
,
F.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Kerschen
,
G.
,
2007
, “
Targeted Energy Transfers in Vibro-Impact Oscillators for Seismic Mitigation
,”
Nonlinear Dyn.
,
50
(
3
), pp.
651
677
.
33.
Wu
,
X.
,
Shao
,
J.
, and
Cochelin
,
B.
,
2016
, “
Study of Targeted Energy Transfer Inside 3D Acoustic Cavity by Two Nonlinear Membrane Absorbers and an Acoustic Mode
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031017
.
34.
Georgiades
,
F.
,
Vakakis
,
A. F.
, and
Kerschen
,
G.
,
2007
, “
Broadband Passive Targeted Energy Pumping From a Linear Dispersive Rod to a Lightweight Essentially Non-Linear End Attachment
,”
Int. J. Non-Linear Mech.
,
42
(
5
), pp.
773
788
.
35.
Georgiades
,
F.
, and
Vakakis
,
A. F.
,
2007
, “
Dynamics of a Linear Beam With an Attached Local Nonlinear Energy Sink
,”
Commun. Non-Linear Sci. Numer. Simul.
,
12
(
5
), pp.
643
651
.
36.
Avramov
,
K. V.
, and
Gendelman
,
O. V.
,
2010
, “
On Interaction of Vibrating Beam With Essentially Nonlinear Absorber
,”
Meccanica
,
45
(
3
), pp.
355
365
.
37.
Ahmadabadi
,
Z. N.
, and
Khadem
,
S. E.
,
2012
, “
Nonlinear Vibration Control of a Cantilever Beam by a Nonlinear Energy Sink
,”
Mech. Mach. Theory
,
50
(
1
), pp.
134
149
.
38.
Gendelman
,
O. V.
,
Sigalov
,
G.
,
Manevitch
,
L. I.
,
Mane
,
M.
, and
Vakakis
,
A. F.
,
2012
, “
Dynamics of an Eccentric Rotational Nonlinear Energy Sink
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011012
.
39.
AL-Shudeifat
,
M. A.
,
Wierschem
,
N.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
Spencer
,
B. F.
,
2013
, “
Numerical and Experimental Investigation of a Highly Effective Single-Sided Vibro-Impact Non-Linear Energy Sink for Shock Mitigation
,”
Int. J. Non-Linear Mech.
,
52
(
5
), pp.
96
109
.
40.
AL-Shudeifat
,
M. A.
,
2014
, “
Asymmetric Magnet-Based Nonlinear Energy Sink
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
014502
.
41.
Vakakis
,
A. F.
,
AL-Shudeifat
,
M. A.
, and
Hasan
,
M. A.
,
2014
, “
Interactions of Propagating Waves in a One-Dimensional Chain of Linear Oscillators With a Strongly Nonlinear Local Attachment
,”
Nonlinear Dyn.
,
49
(
10
), pp.
2375
2397
.
42.
AL-Shudeifat
,
M. A.
,
2014
, “
Highly Efficient Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
76
(
4
), pp.
1905
1920
.
43.
Luo
,
J.
,
Wierschem
,
N. E.
,
Fahnestock
,
L. A.
,
Bergman
,
L. A.
,
Spencer
,
B. F.
,
AL-Shudeifat
,
M.
,
McFarland
,
D. M.
,
Quinn
,
D. D.
, and
Vakakis
,
A. F.
,
2014
, “
Realization of a Strongly Nonlinear Vibration-Mitigation Device Using Elastomeric Bumpers
,”
J. Eng. Mech.
,
140
(
5
), pp.
70
75
.
44.
Gendelman
,
O. V.
, and
Starosvetsky
,
Y.
,
2007
, “
Quasi-Periodic Response Regimes of Linear Oscillator Coupled to Nonlinear Energy Sink Under Periodic Forcing
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
325
331
.
45.
Xiong
,
H.
,
Kong
,
X. R.
,
Yang
,
Z. G.
, and
Liu
,
Y.
,
2015
, “
Response Regimes of Narrow-Band Stochastic Excited Linear Oscillator Coupled to Nonlinear Energy Sink
,”
Chin. J. Aeronaut.
,
28
(
2
), pp.
457
468
.
46.
AL-Shudeifat
,
M. A.
,
2014
, “
Amplitudes Decay in Different Kinds of Nonlinear Oscillators
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031012
.
47.
Yang
,
K.
,
Zhang
,
Y. W.
,
Ding
,
H.
, and
Chen
,
L. Q.
,
2017
, “
The Transmissibility of Nonlinear Energy Sink Based on Nonlinear Output Frequency-Response Functions
,”
Commun. Non-Linear Sci. Numer. Simul.
,
44
(
2017
), pp.
184
192
.
48.
Gourc
,
E.
,
Michon
,
G.
,
Seguy
,
S.
, and
Berlioz
,
A.
,
2015
, “
Targeted Energy Transfer Under Harmonic Forcing With a Vibro-Impact Nonlinear Energy Sink: Analytical and Experimental Developments[J]
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031008
.
49.
Li
,
T.
,
Seguy
,
S.
, and
Berlioz
,
A.
,
2016
, “
Dynamics of Cubic and Vibro-Impact Nonlinear Energy Sink (NES): Analytical, Numerical, and Experimental Analysis[J]
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031010
.
50.
Gourdon
,
E.
,
Alexander
,
N. A.
,
Taylor
,
C. A.
,
Lamarque
,
C. H.
, and
Pernot
,
S.
,
2007
, “
Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results[J]
,”
J. Sound Vib.
,
300
(
3
), pp.
522
551
.
51.
Lee
,
Y. S.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Kerschen
,
G.
,
2007
, “
Suppressing Aeroelastic Instability Using Broadband Passive Targeted Energy Transfers, Part Theory
,”
AIAA J.
,
45
(
3
), pp.
693
711
.
52.
Lee
,
Y. S.
,
Kerschen
,
G.
,
McFarland
,
D. M.
,
Hill
,
W. J.
,
Nichkawde
,
C.
,
Strganac
,
T. W.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2007
, “
Suppressing Aeroelastic Instability Using Broadband Passive Targeted Energy Transfers, Part 2: Experiments
,”
AIAA J.
,
45
(
10
), pp.
2391
2400
.
53.
Guo
,
H. L.
,
Chen
,
Y. S.
, and
Yang
,
T. Z.
,
2013
, “
Limit Cycle Oscillation Suppression of 2-DOF Airfoil Using Nonlinear Energy Sink
,”
Appl. Math. Mech.
,
34
(
10
), pp.
1277
1290
.
54.
Lang
,
Z. Q.
, and
Billings
,
S. A.
,
2005
, “
Energy Transfer Properties of Nonlinear Systems in the Frequency Domain
,”
Int. J. Control
,
78
(
5
), pp.
354
362
.
55.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2009
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
,
Springer
,
Berlin
.
You do not currently have access to this content.