Quasi-periodic motion is an oscillation of a dynamic system characterized by m frequencies that are incommensurable with one another. In this work, a new incremental harmonic balance (IHB) method with only two time scales, where one is one of the m frequencies, referred to as a fundamental frequency, and the other is an interval distance of two adjacent frequencies, is proposed for quasi-periodic motions of an axially moving beam with three-to-one internal resonance under single-tone external excitation. It is found that the interval frequency of every two adjacent frequencies, located around the fundamental frequency or one of its integer multiples, is fixed due to nonlinear coupling among resonant vibration modes. Consequently, only two time scales are used in the IHB method to obtain all incommensurable frequencies of quasi-periodic motions of the axially moving beam. The present IHB method can accurately trace from periodic responses of the beam to its quasi-periodic motions. For periodic responses of the axially moving beam, the single fundamental frequency is used in the IHB method to obtain solutions. For quasi-periodic motions of the beam, the present IHB method with two time scales is used, along with an amplitude increment approach that includes a large number of harmonics, to determine all the frequency components. All the frequency components and their corresponding amplitudes, obtained from the present IHB method, are in excellent agreement with those from numerical integration using the fourth-order Runge–Kutta method.

References

References
1.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
,
1983
, “
Incremental Harmonic Balance Method With Multiple Time Scales for Aperiodic Vibration Of Nonlinear Systems
,”
ASME J. Appl. Mech.
,
50
(
4a
), pp.
871
876
.
2.
Ling
,
F. H.
,
1991
, “
Quasi-Periodic Solutions Calculated With the Simple Shooting Technique
,”
J. Sound Vib.
,
144
(
2
), pp.
293
304
.
3.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1996
, “
Quasi-Periodic Response and Stability Analysis for a Non-Linear Jeffcott Rotor
,”
J. Sound Vib.
,
190
(
2
), pp.
239
253
.
4.
Guennoun
,
K.
,
Houssni
,
M.
, and
Belhaq
,
M.
,
2002
, “
Quasi-Periodic Solutions and Stability for a Weakly Damped Nonlinear Quasi-Periodic Mathieu Equation
,”
Nonlinear Dyn.
,
27
(
3
), pp.
211
236
.
5.
Pusenjak
,
R. R.
, and
Oblak
,
M. M.
,
2004
, “
Incremental Harmonic Balance Method With Multiple Time Variables for Dynamical Systems With Cubic Non-Linearities
,”
Int. J. Numer. Methods Eng.
,
59
(
2
), pp.
255
292
.
6.
Zhou
,
B.
,
Thouverez
,
F.
, and
Lenoir
,
D.
,
2015
, “
A Variable-Coefficient Harmonic Balance Method for the Prediction of Quasi-Periodic Response in Nonlinear Systems
,”
Mech. Syst. Signal Process.
,
64–65
, pp.
233
244
.
7.
Avramov
,
K.
,
Shulzhenko
,
M.
,
Borysiuk
,
O.
, and
Pierre
,
C.
,
2015
, “
Influence of Periodic Excitation on Self-Sustained Vibrations of One Disk Rotors in Arbitrary Length Journals Bearings
,”
Int. J. Non-Linear Mech.
,
77
, pp.
274
280
.
8.
Ni
,
Q.
,
Wang
,
Y. K.
,
Tang
,
M.
,
Luo
,
Y. Y.
,
Yan
,
H.
, and
Wang
,
L.
,
2015
, “
Nonlinear Impacting Oscillations of a Fluid-Conveying Pipe Subjected to Distributed Motion Constraints
,”
Nonlinear Dyn.
,
81
(
1-2
), pp.
893
906
.
9.
Oberst
,
S.
, and
Lai
,
J. C. S.
,
2015
, “
Nonlinear Transient and Chaotic Interactions in Disc Brake Squeal
,”
J. Sound Vib.
,
342
(
28
), pp.
272
289
.
10.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
11.
Belhaq
,
M.
, and
Houssni
,
M.
,
1999
, “
Quasi-Periodic Oscillations, Chaos and Suppression of Chaos in a Nonlinear Oscillator Driven by Parametric and External Excitations
,”
Nonlinear Dyn.
,
18
(
1
), pp.
1
24
.
12.
Summers
,
J. L.
,
1995
, “
Variable-Coefficient Harmonic Balance for Periodically Forced Nonlinear Oscillators
,”
Nonlinear Dyn.
,
7
(
1
), pp.
11
35
.
13.
Schilder
,
F.
,
Vogt
,
W.
,
Schreiber
,
S.
, and
Osinga
,
H. M.
,
2006
, “
Fourier Methods for Quasi-Periodic Oscillations
,”
Int. J. Numer. Methods Eng.
,
67
(
5
), pp.
629
671
.
14.
Wang
,
L.
,
2009
, “
A Further Study on the Non-Linear Dynamics of Simply Supported Pipes Conveying Pulsating Fluid
,”
Int. J. Non-Linear Mech.
,
44
(
1
), pp.
115
121
.
15.
Balachandran
,
B.
, and
Nayfeh
,
A. H.
,
1991
, “
Observations of Modal Interactions in Resonantly Forced Beam-Mass Structures
,”
Nonlinear Dyn.
,
2
(
2
), pp.
77
117
.
16.
Raghothama
,
A.
, and
Narayanan
,
S.
,
1999
, “
Bifurcation and Chaos in Geared Rotor Bearing System by Incremental Harmonic Balance Method
,”
J. Sound Vib.
,
226
(
3
), pp.
469
492
.
17.
Yang
,
X. D.
, and
Chen
,
L. Q.
,
2005
, “
Bifurcation and Chaos of an Axially Accelerating Viscoelastic Beam
,”
Chaos Solitons Fractals
,
23
(
1
), pp.
249
258
.
18.
Ding
,
H.
,
Yan
,
Q. Y.
, and
Chen
,
L. Q.
,
2013
, “
Chaotic Dynamics in the Forced Nonlinear Vibration of an Axially Accelerating Viscoelastic Beam
,”
Acta Phys. Sin.
,
62
(
20
), p.
200502
.
19.
Chen
,
L. H.
,
Zhang
,
W.
, and
Yang
,
F. H.
,
2010
, “
Nonlinear Dynamics of Higher-Dimensional System for an Axially Accelerating Viscoelastic Beam With In-Plane and Out-of-Plane Vibrations
,”
J. Sound Vib.
,
329
(
25
), pp.
5321
5345
.
20.
Lu
,
L. F.
,
Wang
,
Y. F.
,
Liu
,
X. R.
, and
Liu
,
Y. X.
,
2010
, “
Delay-Induced Dynamics of an Axially Moving String With Direct Time-Delayed Velocity Feedback
,”
J. Sound Vib.
,
329
(
26
), pp.
5434
5451
.
21.
Ghayesh
,
M. H.
,
2012
, “
Stability and Bifurcations of an Axially Moving Beam With an Intermediate Spring Support
,”
Nonlinear Dyn.
,
69
(
1
), pp.
193
210
.
22.
Huang
,
J. L.
,
Su
,
R. K. L.
,
Li
,
W. H.
, and
Chen
,
S. H.
,
2011
, “
Stability and Bifurcation of an Axially Moving Beam Tuned to Three-to-One Internal Resonances
,”
J. Sound Vib.
,
330
(
3
), pp.
471
485
.
23.
Farokhi
,
H.
,
Ghayesh
,
M. H.
, and
Hussain
,
S.
,
2015
, “
Three-Dimensional Nonlinear Global Dynamics of Axially Moving Viscoelastic Beams
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011007
.
24.
Lau
,
S. L.
, and
Cheung
,
Y. K.
,
1981
, “
Amplitude Incremental Variational Principle for Nonlinear Structural Vibrations
,”
ASME J. Appl. Mech.
,
48
(
4
), pp.
959
964
.
25.
Xu
,
G. Y.
, and
Zhu
,
W. D.
,
2010
, “
Nonlinear and Time-Varying Dynamics of High-Dimensional Models of a Translating Beam With a Stationary Load Subsystem
,”
ASME J. Vib. Acoust.
,
132
(
6
), p.
061012
.
26.
Wang
,
X. F.
, and
Zhu
,
W. D.
,
2017
, “
Dynamic Analysis of an Automotive Belt-Drive System With a Noncircular Sprocket by a Modified Incremental Harmonic Balance Method
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011009
.
27.
Cheung
,
Y. K.
,
Chen
,
S. H.
, and
Lau
,
S. L.
,
1990
, “
Application of the Incremental Harmonic Balance Method to Cubic Non-Linearity Systems
,”
J. Sound Vib.
,
140
(
2
), pp.
273
286
.
28.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wiley
,
New York
.
29.
Ma
,
Y. T.
,
1997
, “
An Accurate Error Analysis Model for Fast Fourier Transform
,”
IEEE Trans. Signal Processing
,
45
(
6
), pp.
1641
1645
.
30.
Adireddy
,
S.
, and
Prabhu
,
K. M. M.
,
1999
, “
A Note on an Accurate Error Analysis Model for Fast Fourier Transform
,”
IEEE Trans. Signal Process.
,
47
(
6
), pp.
1743
1744
.
You do not currently have access to this content.