Mode veering is the phenomenon associated with the eigenvalue loci for a system with a variable parameter: two branches approach each other and then rapidly veer away and diverge instead of crossing. The veering is accompanied by rapid variations in the eigenvectors. In this paper, veering in structural dynamics is analyzed in general terms. First, a discrete conservative model with stiffness, mass, and/or gyroscopic coupling is considered. Rapid veering requires weak coupling: if there is instead strong coupling then there is a slow evolution of the eigenvalue loci rather than rapid veering. The uncoupled-blocked system is defined to be that where all degrees-of-freedom (DOFs) but one are blocked. The skeleton of the system is the loci of the eigenvalues of the uncoupled-blocked system as the variable parameter changes. These loci intersect at certain critical points in the parameter space. Following a perturbation analysis, veering is seen to comprise rapid changes of the eigenvalues in small regions of the parameter space around the critical points: for coupling terms of order ε veering occurs in a region of order ε around the critical points, with the rate of change of eigenvalues being of order ε1. This is accompanied by rapid rotations in the eigenvectors. The choice of coordinates in the model and application to continuous systems is discussed. For nonconservative systems, it is seen that veering also occurs under certain circumstances. Examples of 2DOFs, multi-DOFs (MDOFs), and continuous systems are presented to illustrate the results.

References

References
1.
Webster
,
J. J.
,
1968
, “
Free Vibrations of Rectangular Curved Panels
,”
Int. J. Mech. Sci.
,
10
(
7
), pp.
571
582
.
2.
Petyt
,
M.
, and
Fleisxer
,
C. C.
,
1971
, “
Free Vibration of a Curved Beam
,”
J. Sound Vib.
,
18
(
1
), pp.
17
30
.
3.
Nair
,
P. S.
, and
Durvasul
,
S.
,
1973
, “
On Quasi-Degeneracies in Plate Vibration Problems
,”
Int. J. Mech. Sci.
,
15
(
12
), pp.
975
986
.
4.
Leissa
,
A. W.
,
1974
, “
On a Curve Veering Aberration
,”
J. Appl. Math. Phys. (ZAMP)
,
25
(
1
), pp.
99
111
.
5.
Perkins
,
N. C.
, and
Mote
,
C. D.
, Jr.
,
1986
, “
Comments on Curve Veering in Eigenvalue Problems
,”
J. Sound Vib.
,
106
(
3
), pp.
451
463
.
6.
Pierre
,
C.
,
1987
, “
Localisation of Vibration and Vibrations by Structural Irregularity
,”
J. Sound Vib.
,
114
(
3
), pp.
549
564
.
7.
MacKay
,
R. S.
,
1986
, “
Stability of Equilibria of Hamiltonian Systems
,”
Nonlinear Phenomena and Chaos
,
S.
Sarkar
, ed.,
Adam Hilger
,
Bristol, UK
, pp.
54
70
.
8.
Balmes
,
E.
,
1993
, “
High Modal Density, Curve Veering, Localization: A Different Perspective on the Structural Response
,”
J. Sound Vib.
,
161
(
2
), pp.
358
363
.
9.
Triantafyllou
,
M. S.
, and
Triantafyllou
,
G. S.
,
1991
, “
Frequency Coalescence and Mode Localization Phenomena: A Geometric Theory
,”
J. Sound Vib.
,
150
(
3
), pp.
485
500
.
10.
Arnold
,
V. I.
,
1989
,
Mathematical Method of Classical Mechanics
,
2nd ed.
,
Springer-Verlag
,
New York
.
11.
Vidoli
,
S.
, and
Vestroni
,
F.
,
2005
, “
Veering Phenomena in Systems With Gyroscopic Coupling
,”
ASME J. Appl. Mech.
,
72
(
5
), pp.
641
647
.
12.
Doll
,
R. W.
, and
Mote
,
C. D.
,
1976
, “
On the Dynamic Analysis of Curved and Twisted Cylinders Transporting Fluids
,”
ASME J. Pressure Vessel Technol.
,
98
(
2
), pp.
143
150
.
13.
Triantafyllou
,
M. S.
,
1984
, “
The Dynamics of Taut Inclined Cables
,”
Q. J. Mech. Appl. Math.
,
37
(
3
), pp.
421
440
.
14.
Du Bois
,
J. L.
,
Adhikari
,
S.
, and
Lieven
,
N. A. J.
,
2009
, “
Eigenvalue Curve Veering in Stressed Structures: An Experimental Study
,”
J. Sound Vib.
,
322
(
4–5
), pp.
1117
1124
.
15.
Giannini
,
O.
, and
Sestieri
,
A.
,
2016
, “
Experimental Characterization of Veering Crossing and Lock-In in Simple Mechanical Systems
,”
Mech. Syst. Signal Process.
,
72–73
, pp.
846
864
.
16.
Cooley
,
C. G.
, and
Parker
,
R. G.
,
2014
, “
Vibration of Spinning Cantilever Beams With an Attached Rigid Body Undergoing Bending-Torsional-Axial Motion
,”
ASME J. Appl. Mech.
,
81
(
5
), p.
0510021
.
17.
Shi
,
C.
, and
Parker
,
R. G.
,
2013
, “
Vibration Models and Natural Frequency Veering in Three Dimensional, Cyclically Symmetric Centrifugal Pendulum Vibration Absorber Systems
,”
ASME J. Vib. Acoust.
,
136
(
1
), p.
0110141
.
18.
Klauche
,
T.
,
Strehlau
,
U.
, and
Kuhhorn
,
A.
,
2013
, “
Integer Frequency Veering of Mistuned Integrated Disk
,”
ASME J. Turbomach.
,
135
(
6
), p.
0610041
.
19.
Han
,
Y.
, and
Mignolet
,
M. P.
,
2015
, “
A Novel Perturbation-Based Approach for the Prediction of the Forced Response of Damped Mistuned Bladed Disks
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
041008
.
20.
Timoshenko
,
S.
,
Young
,
D. H.
, and
Weaver
,
W.
, Jr.
,
1967
,
Vibration Problems in Engineering
,
Wiley
,
New York
.
21.
Bishop
,
D.
, and
Price
,
W. G.
,
1977
, “
Coupled Bending and Twisting of a Timoshenko Beam
,”
J. Sound Vib
,
50
(
4
), pp.
469
477
.
22.
Lacarbonara
,
W.
,
Arafat
,
H. N.
, and
Nayfeh
,
A. H.
,
2005
, “
Non-Linear Interactions in Imperfect Beams at Veering
,”
Int. J. Non-Linear Mech.
,
40
(
7
), pp.
987
1003
.
23.
Chiba
,
M.
, and
Sugimoto
,
T.
,
2003
, “
Vibration Characteristics of a Cantilever Plate With Attached Spring-Mass System
,”
J. Sound Vib.
,
260
(
2
), pp.
237
263
.
24.
Hodges
,
C. H.
,
1982
, “
Confinement of Vibration by Structural Irregularity
,”
J. Sound Vib.
,
82
(
3
), pp.
411
424
.
25.
Pierre
,
C.
,
1988
, “
Mode Localization and Eigenvalue Loci Veering Phenomena in Disordered Structures
,”
J. Sound Vib.
,
126
(
3
), pp.
485
502
.
26.
Chen
,
P. T.
, and
Ginsberg
,
J. H.
,
1992
, “
On the Relationship Between Veering of Eigenvalue Loci and Parameter Sensitivity of Eigenfunction
,”
ASME J. Vib. Acoust.
,
114
(
2
), pp.
141
148
.
27.
Lee
,
S. Y.
, and
Mote
,
C. D.
, Jr.
,
1998
, “
Traveling Wave Dynamics in a Translating String Coupled to Stationary Constraints: Energy Transfer and Mode Localization
,”
J. Sound Vib.
,
212
(
1
), pp.
1
22
.
28.
Chandrashaker
,
A.
,
Adhikari
,
S.
, and
Friswell
,
M. I.
,
2016
, “
Quantification of Vibration Localization in Periodic Structures
,”
ASME J. Vib. Acoust.
,
138
(
2
), p.
021002
.
29.
Vakakis
,
A. F.
, and
Cetinkaya
,
C.
,
1993
, “
Mode Localization in a Class of Multidegree-of-Freedom Nonlinear Systems With Cyclic Symmetry
,”
SIAM J. Appl. Math.
,
53
(
1
), pp.
265
282
.
30.
Gil-Santos
,
E.
,
Ramos
,
D.
,
Pini
,
V.
,
Calleja
,
M.
, and
Tamayo
,
J.
,
2011
, “
Exponential Tuning of the Coupling Constant of Coupled Microcantilevers by Modifying Their Separation
,”
Appl. Phys. Lett.
,
98
(
12
), p.
123108
.
31.
Manav
,
M.
,
Reynen
,
G.
,
Sharma
,
M.
,
Cretu
,
E.
, and
Phani
,
A. S.
,
2014
, “
Ultrasensitive Resonant MEMS Transducers With Tuneable Coupling
,”
J. Micromech. Microeng.
,
24
(
5
), p.
055005
.
32.
Gallina
,
A.
,
Pichler
,
L.
, and
Uhl
,
T.
,
2011
, “
Enhanced Meta-Modelling Technique for Analysis of Mode Crossing, Mode Veering and More Coalescence in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2297
2312
.
33.
Mace
,
B. R.
, and
Manconi
,
E.
,
2012
, “
Wave Motion and Dispersion Phenomena: Veering, Locking and Strong Coupling Effects
,”
J. Acoust. Soc. Am.
,
131
(
2
), pp.
1015
1028
.
34.
Kreyszig
,
E.
,
1962
,
Advanced Engineering Mathematics
, Wiley International Edition,
4th edition
,
Wiley
,
New York
, pp.
399
409
.
You do not currently have access to this content.