Owing to their ability to block propagating waves at certain frequencies, phononic materials of self-repeating cells are widely appealing for acoustic mitigation and vibration suppression applications. The stop band behavior achieved via Bragg scattering in phononic media is most commonly evaluated using wave propagation models which predict gaps in the dispersion relations of the individual unit cells for a given frequency range. These models are in many ways limited when analyzing phononic structures with dissipative constituents and need further adjustments to account for viscous damping given by complex elastic moduli and frequency-dependent loss factors. A new approach is presented which relies on evaluating structural intensity parameters, such as the active vibrational power flow in finite phononic structures. It is shown that the steady-state spatial propagation of vibrational power flow initiated by an external disturbance reflects the wave propagation pattern in the phononic medium and can thus be reverse engineered to numerically predict the stop band frequencies for different degrees of damping via a stop band index (SBI). The treatment is shown to be very effective for phononic structures with viscoelastic components and provides a clear distinction between Bragg scattering effects and wave attenuation due to material damping. Since the approach is integrated with finite element methods, the presented analysis can be extended to two-dimensional lattices with complex geometries and multiple material constituents.

References

1.
Brillouin
,
L.
,
1946
,
Wave Propagation in Periodic Structures. Electric Filters and Crystal Lattices
(
International Series in Pure and Applied Physics
), 1st ed.,
McGraw-Hill
,
New York
.
2.
Mead
,
D. J.
,
1970
, “
Free Wave Propagation in Periodically Supported, Infinite Beams
,”
J. Sound Vib.
,
11
(
2
), pp.
181
197
.
3.
Faulkner
,
M.
, and
Hong
,
D.
,
1985
, “
Free Vibrations of a Mono-Coupled Periodic System
,”
J. Sound Vib.
,
99
(
1
), pp.
29
42
.
4.
Mead
,
D. J.
,
1975
, “
Wave Propagation and Natural Modes in Periodic Systems: I. Mono-Coupled Systems
,”
J. Sound Vib.
,
40
(
1
), pp.
1
18
.
5.
Mead
,
D. J.
,
1971
, “
Vibration Response and Wave Propagation in Periodic Structures
,”
ASME J. Manuf. Sci. Eng.
,
93
(
3
), pp.
783
792
.
6.
Mead
,
D. J.
, and
Yaman
,
Y.
,
1991
, “
The Harmonic Response of Rectangular Sandwich Plates With Multiple Stiffening: A Flexural Wave Analysis
,”
J. Sound Vib.
,
145
(
3
), pp.
409
428
.
7.
Gupta
,
G. S.
,
1970
, “
Natural Flexural Waves and the Normal Modes of Periodically-Supported Beams and Plates
,”
J. Sound Vib.
,
13
(
1
), pp.
89
101
.
8.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
9.
Hussein
,
M. I.
,
2009
, “
Reduced Bloch Mode Expansion for Periodic Media Band Structure Calculations
,”
Proc. R. Soc. London, Ser. A
,
465
(
2109
), pp.
2825
2848
.
10.
Langley
,
R. S.
,
1993
, “
A Note on the Force Boundary Conditions for Two-Dimensional Periodic Structures With Corner Freedoms
,”
J. Sound Vib.
,
167
(
2
), pp.
377
381
.
11.
Farzbod
,
F.
, and
Leamy
,
M.
,
2009
, “
The Treatment of Forces in Bloch Analysis
,”
J. Sound Vib.
,
325
(
3
), pp.
545
551
.
12.
Farzbod
,
F.
, and
Leamy
,
M.
,
2011
, “
Analysis of Bloch's Method and the Propagation Technique in Periodic Structures
,”
ASME J. Vib. Acoust.
,
133
(
3
), p.
031010
.
13.
Wang
,
Y.
, and
Wang
,
Y.
,
2013
, “
Complete Bandgaps in Two-Dimensional Phononic Crystal Slabs With Resonators
,”
J. Appl. Phys.
,
114
(
4
), p.
043509
.
14.
Phani
,
A. S.
,
Woodhouse
,
J.
, and
Fleck
,
N.
,
2006
, “
Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Acoust. Soc. Am.
,
119
(
4
), pp.
1995
2005
.
15.
Ruzzene
,
M.
, and
Baz
,
A.
,
2000
, “
Control of Wave Propagation in Periodic Composite Rods Using Shape Memory Inserts
,”
ASME J. Vib. Acoust.
,
122
(
2
), pp.
151
159
.
16.
Ruzzene
,
M.
, and
Baz
,
A.
,
2000
, “
Attenuation and Localization of Wave Propagation in Periodic Rods Using Shape Memory Inserts
,”
7th Annual International Symposium on Smart Structures and Materials, International Society for Optics and Photonics
(
SPIE
), Newport Beach, CA, Mar. 7–9, pp.
389
407
.
17.
Baz
,
A.
,
2001
, “
Active Control of Periodic Structures
,”
ASME J. Vib. Acoust.
,
123
(
4
), pp.
472
479
.
18.
Khelif
,
A.
,
Aoubiza
,
B.
,
Mohammadi
,
S.
,
Adibi
,
A.
, and
Laude
,
V.
,
2006
, “
Complete Band Gaps in Two-Dimensional Phononic Crystal Slabs
,”
Phys. Rev. E
,
74
(
4
), p.
046610
.
19.
Diaz
,
A. R.
,
Haddow
,
A. G.
, and
Ma
,
L.
,
2005
, “
Design of Band-Gap Grid Structures
,”
Struct. Multidiscip. Optim.
,
29
(
6
), pp.
418
431
.
20.
Sorokin
,
S. V.
, and
Ershova
,
O. A.
,
2004
, “
Plane Wave Propagation and Frequency Band Gaps in Periodic Plates and Cylindrical Shells With and Without Heavy Fluid Loading
,”
J. Sound Vib.
,
278
(
3
), pp.
501
526
.
21.
Gonella
,
S.
,
To
,
A. C.
, and
Liu
,
W. K.
,
2009
, “
Interplay Between Phononic Bandgaps and Piezoelectric Microstructures for Energy Harvesting
,”
J. Mech. Phys. Solids
,
57
(
3
), pp.
621
633
.
22.
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2014
, “
Vibration Characteristics of Metamaterial Beams With Periodic Local Resonances
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061012
.
23.
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2014
, “
Metamaterial Structures With Periodic Local Resonances
,”
Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring
, International Society for Optics and Photonics (
SPIE
), San Diego, CA, Mar. 9–13, pp.
90641Y
90641Y
.
24.
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2015
, “
Wave Propagation in Metamaterial Plates With Periodic Local Resonances
,”
J. Sound Vib.
,
341
, pp.
53
73
.
25.
Bloch
,
F.
,
1929
, “
Über die quantenmechanik der elektronen in kristallgittern
,”
Z. Phys.
,
52
(
7–8
), pp.
555
600
.
26.
Floquet
,
G.
,
1883
, “
Sur les équations différentielles linéaires à coefficients périodiques
,”
Ann. Sci. Éc. Norm. Supér.
,
12
, pp.
47
88
.
27.
Zhao
,
Y.
, and
Wei
,
P.
,
2009
, “
The Band Gap of 1D Viscoelastic Phononic Crystal
,”
Comput. Mater. Sci.
,
46
(
3
), pp.
603
606
.
28.
Ma
,
Y.
,
Scarpa
,
F.
,
Zhang
,
D.
,
Zhu
,
B.
,
Chen
,
L.
, and
Hong
,
J.
,
2013
, “
A Nonlinear Auxetic Structural Vibration Damper With Metal Rubber Particles
,”
Smart Mater. Struct.
,
22
(
8
), p.
084012
.
29.
Mukherjee
,
S.
, and
Lee
,
E. H.
,
1975
, “
Dispersion Relations and Mode Shapes for Waves in Laminated Viscoelastic Composites by Finite Difference Methods
,”
Comput. Struct.
,
5
(
5
), pp.
279
285
.
30.
Farzbod
,
F.
, and
Leamy
,
M. J.
,
2011
, “
Analysis of Bloch's Method in Structures With Energy Dissipation
,”
ASME J. Vib. Acoust.
,
133
(
5
), p.
051010
.
31.
Collet
,
M.
,
Ouisse
,
M.
,
Ruzzene
,
M.
, and
Ichchou
,
M. N.
,
2011
, “
Floquet–Bloch Decomposition for the Computation of Dispersion of Two-Dimensional Periodic, Damped Mechanical Systems
,”
Int. J. Solids Struct.
,
48
(
20
), pp.
2837
2848
.
32.
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2015
, “
Periodic Metamaterial Plates With Smart Tunable Local Resonators
,”
J. Intell. Mater. Syst. Struct.
,
27
(
13
), pp.
1829
1845
.
33.
Hussein
,
M. I.
, and
Frazier
,
M. J.
,
2010
, “
Band Structure of Phononic Crystals With General Damping
,”
J. Appl. Phys.
,
108
(
9
), p.
093506
.
34.
Phani
,
A. S.
, and
Hussein
,
M. I.
,
2013
, “
Analysis of Damped Bloch Waves by the Rayleigh Perturbation Method
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041014
.
35.
Andreassen
,
E.
, and
Jensen
,
J. S.
,
2013
, “
Analysis of Phononic Bandgap Structures With Dissipation
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041015
.
36.
Merheb
,
B.
,
Deymier
,
P. A.
,
Jain
,
M.
,
Aloshyna-Lesuffleur
,
M.
,
Mohanty
,
S.
,
Berker
,
A.
, and
Greger
,
R. W.
,
2008
, “
Elastic and Viscoelastic Effects in Rubber/Air Acoustic Band Gap Structures: A Theoretical and Experimental Study
,”
J. Appl. Phys.
,
104
(
6
), p.
064913
.
37.
Manconi
,
E.
, and
Mace
,
B. R.
,
2010
, “
Estimation of the Loss Factor of Viscoelastic Laminated Panels From Finite Element Analysis
,”
J. Sound Vib.
,
329
(
19
), pp.
3928
3939
.
38.
Manimala
,
J. M.
, and
Sun
,
C. T.
,
2014
, “
Microstructural Design Studies for Locally Dissipative Acoustic Metamaterials
,”
J. Appl. Phys.
,
115
(
2
), p.
023518
.
39.
Golla
,
D. F.
, and
Hughes
,
P. C.
,
1985
, “
Dynamics of Viscoelastic Structures—A Time-Domain, Finite Element Formulation
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
897
906
.
40.
Gavrić
,
L.
, and
Pavić
,
G.
,
1993
, “
A Finite Element Method for Computation of Structural Intensity by the Normal Mode Approach
,”
J. Sound Vib.
,
164
(
1
), pp.
29
43
.
41.
Pavic
,
G.
,
2005
, “
The Role of Damping on Energy and Power in Vibrating Systems
,”
J. Sound Vib.
,
281
(
1
), pp.
45
71
.
42.
Alfredsson
,
K. S.
,
Josefson
,
B. L.
, and
Wilson
,
M. A.
,
1996
, “
Use of the Energy Flow Concept in Vibration Design
,”
AIAA J.
,
34
(
6
), pp.
1250
1255
.
43.
Alfredsson
,
K.
,
1997
, “
Active and Reactive Structural Energy Flow
,”
ASME J. Vib. Acoust.
,
119
(
1
), pp.
70
79
.
44.
Arruda
,
J. R.
,
Dehandschutter
,
W.
, and
Sas
,
P.
,
1998
, “
Active Vibration Control in Finite Plates Using a Structural Power Flow Approach
,”
Acta Acust. Acust.
,
84
(
3
), pp.
465
474
.
45.
Nefske
,
D. J.
, and
Sung
,
S. H.
,
1989
, “
Power Flow Finite Element Analysis of Dynamic Systems: Basic Theory and Application to Beams
,”
ASME J. Vib. Acoust.
,
111
(
1
), pp.
94
100
.
46.
Wohlever
,
J. C.
, and
Bernhard
,
R. J.
,
1992
, “
Mechanical Energy Flow Models of Rods and Beams
,”
J. Sound Vib.
,
153
(
1
), pp.
1
19
.
47.
Bouthier
,
O. M.
, and
Bernhard
,
R. J.
,
1995
, “
Simple Models of Energy Flow in Vibrating Membranes
,”
J. Sound Vib.
,
182
(
1
), pp.
129
147
.
48.
Pavić
,
G.
,
1976
, “
Measurement of Structure Borne Wave Intensity—Part I: Formulation of the Methods
,”
J. Sound Vib.
,
49
(
2
), pp.
221
230
.
49.
Pavić
,
G.
,
1987
, “
Structural Surface Intensity: An Alternative Approach in Vibration Analysis and Diagnosis
,”
J. Sound Vib.
,
115
(
3
), pp.
405
422
.
50.
Xu
,
X. D.
,
Lee
,
H.
,
Lu
,
C.
, and
Guo
,
J.
,
2005
, “
Streamline Representation for Structural Intensity Fields
,”
J. Sound Vib.
,
280
(
1
), pp.
449
454
.
51.
Cieślik
,
J.
, and
Bochniak
,
W.
,
2006
, “
Vibration Energy Flow in Ribbed Plates
,”
Mechanics
,
25
(
3
), pp.
119
123
.
You do not currently have access to this content.