Owing to their ability to block propagating waves at certain frequencies, phononic materials of self-repeating cells are widely appealing for acoustic mitigation and vibration suppression applications. The stop band behavior achieved via Bragg scattering in phononic media is most commonly evaluated using wave propagation models which predict gaps in the dispersion relations of the individual unit cells for a given frequency range. These models are in many ways limited when analyzing phononic structures with dissipative constituents and need further adjustments to account for viscous damping given by complex elastic moduli and frequency-dependent loss factors. A new approach is presented which relies on evaluating structural intensity parameters, such as the active vibrational power flow in finite phononic structures. It is shown that the steady-state spatial propagation of vibrational power flow initiated by an external disturbance reflects the wave propagation pattern in the phononic medium and can thus be reverse engineered to numerically predict the stop band frequencies for different degrees of damping via a stop band index (SBI). The treatment is shown to be very effective for phononic structures with viscoelastic components and provides a clear distinction between Bragg scattering effects and wave attenuation due to material damping. Since the approach is integrated with finite element methods, the presented analysis can be extended to two-dimensional lattices with complex geometries and multiple material constituents.
Skip Nav Destination
Article navigation
April 2017
Research-Article
An Investigation of Vibrational Power Flow in One-Dimensional Dissipative Phononic Structures
H. Al Ba'ba'a,
H. Al Ba'ba'a
Mechanical and Aerospace
Engineering Department,
University at Buffalo (SUNY),
Buffalo, NY 14260
Engineering Department,
University at Buffalo (SUNY),
Buffalo, NY 14260
Search for other works by this author on:
M. Nouh
M. Nouh
Mechanical and Aerospace
Engineering Department,
University at Buffalo (SUNY),
Buffalo, NY 14260
e-mail: mnouh@buffalo.edu
Engineering Department,
University at Buffalo (SUNY),
Buffalo, NY 14260
e-mail: mnouh@buffalo.edu
Search for other works by this author on:
H. Al Ba'ba'a
Mechanical and Aerospace
Engineering Department,
University at Buffalo (SUNY),
Buffalo, NY 14260
Engineering Department,
University at Buffalo (SUNY),
Buffalo, NY 14260
M. Nouh
Mechanical and Aerospace
Engineering Department,
University at Buffalo (SUNY),
Buffalo, NY 14260
e-mail: mnouh@buffalo.edu
Engineering Department,
University at Buffalo (SUNY),
Buffalo, NY 14260
e-mail: mnouh@buffalo.edu
1Corresponding author.
Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received March 28, 2016; final manuscript received October 5, 2016; published online February 3, 2017. Assoc. Editor: Mahmoud Hussein.
J. Vib. Acoust. Apr 2017, 139(2): 021003 (10 pages)
Published Online: February 3, 2017
Article history
Received:
March 28, 2016
Revised:
October 5, 2016
Citation
Al Ba'ba'a, H., and Nouh, M. (February 3, 2017). "An Investigation of Vibrational Power Flow in One-Dimensional Dissipative Phononic Structures." ASME. J. Vib. Acoust. April 2017; 139(2): 021003. https://doi.org/10.1115/1.4035108
Download citation file:
Get Email Alerts
Designing Topological Acoustic Lattices via Electroacoustic Analogies
J. Vib. Acoust (October 2023)
On the Feasibility of Dynamic Substructuring for Hybrid Testing of Vibrating Structures
J. Vib. Acoust (August 2023)
Related Articles
Acoustic Modeling of Charge Air Coolers
J. Vib. Acoust (August,2017)
Number of Wavevectors for Each Frequency in a Periodic Structure
J. Vib. Acoust (October,2017)
Separation of Traveling and Standing Waves in a Rigid-Walled Circular Duct Containing an Intermediate Impedance Discontinuity
J. Vib. Acoust (December,2017)
Anomalous Manipulation of Acoustic Wavefront With an Ultrathin Planar Metasurface
J. Vib. Acoust (August,2016)
Related Chapters
Supporting Systems/Foundations
Handbook on Stiffness & Damping in Mechanical Design
Dynamic Radiation Force of Acoustic Waves
Biomedical Applications of Vibration and Acoustics in Imaging and Characterizations
Fluidelastic Instability of Tube Bundles in Single-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment