Parametric resonators that show large amplitude of vibration are highly desired for sensing applications. In this paper, a microelectromechanical system (MEMS) parametric resonator with a flexible support that uses electrostatic fringe fields to achieve resonance is introduced. The resonator shows a 50% increase in amplitude and a 50% decrease in threshold voltage compared with a fixed support cantilever model. The use of electrostatic fringe fields eliminates the risk of pull-in and allows for high amplitudes of vibration. We studied the effect of decreasing boundary stiffness on steady-state amplitude and found that below a threshold chaotic behavior can occur, which was verified by the information dimension of 0.59 and Poincaré maps. Hence, to achieve a large amplitude parametric resonator, the boundary stiffness should be decreased but should not go below a threshold when the chaotic response will appear. The resonator described in this paper uses a crab-leg spring attached to a cantilever beam to allow for both translation and rotation at the support. The presented study is useful in the design of mass sensors using parametric resonance (PR) to achieve large amplitude and signal-to-noise ratio.

References

1.
Davis
,
Z. J.
,
Svendsen
,
W.
, and
Boisen
,
A.
,
2007
, “
Design, Fabrication and Testing of a Novel MEMS Resonator for Mass Sensing Applications
,”
Microelectron. Eng.
,
84
(
5–8
), pp.
1601
1605
.
2.
Sharma
,
M.
,
Sarraf
,
E. H.
, and
Cretu
,
E.
,
2011
, “
Parametric Amplification/Damping in MEMS Gyroscopes
,”
IEEE International Conference on Micro Electro Mechanical Systems
(
MEMS
), Jan. 23–27, pp.
617
620
.
3.
Jia
,
Y.
,
Yan
,
J.
,
Soga
,
K.
, and
Seshia
,
A. A.
,
2013
, “
Parametrically Excited MEMS Vibration Energy Harvesters With Design Approaches to Overcome the Initiation Threshold Amplitude
,”
J. Micromech. Microeng.
,
23
(
11
), p.
114007
.
4.
Guo
,
C.
, and
Fedder
,
G. K.
,
2013
, “
Behavioral Modeling of a CMOS-MEMS Nonlinear Parametric Resonator
,”
J. Microelectromech. Syst.
,
22
(
6
), pp.
1447
1457
.
5.
Huang
,
J. M.
,
Liu
,
A. Q.
,
Deng
,
Z. L.
, and
Zhang
,
Q. X.
,
2006
, “
A Modeling and Analysis of Spring-Shaped Torsion Micromirrors for Low-Voltage Applications
,”
Int. J. Mech. Sci.
,
48
(
6
), pp.
650
661
.
6.
Linzon
,
Y.
,
Ilic
,
B.
,
Lulinsky
,
S.
, and
Krylov
,
S.
,
2013
, “
Efficient Parametric Excitation of Silicon-on-Insulator Microcantilever Beams by Fringing Electrostatic Fields
,”
J. Appl. Phys.
,
113
(
16
), p.
163508
.
7.
Frangi
,
A.
,
Laghi
,
G.
,
Langfelder
,
G.
,
Minotti
,
P.
, and
Zerbini
,
S.
,
2015
, “
Optimization of Sensing Stators in Capacitive MEMS Operating at Resonance
,”
J. Microelectromech. Syst.
,
24
(
4
), pp.
1077
1084
.
8.
Shmulevich
,
S.
,
Grinberg
, I
. H.
, and
Elata
,
D.
,
2015
, “
A MEMS Implementation of a Classical Parametric Resonator
,”
J. Microelectromech. Syst.
,
24
(
5
), pp.
1285
1292
.
9.
Harish
,
K. M.
,
Gallacher
,
B. J.
,
Burdess
,
J. S.
, and
Neasham
,
J. A.
,
2008
, “
Experimental Investigation of Parametric and Externally Forced Motion in Resonant MEMS Sensors
,”
J. Micromech. Microeng.
,
19
(
1
), p.
015021
.
10.
Zhang
,
W.-M.
, and
Meng
,
G.
,
2007
, “
Nonlinear Dynamic Analysis of Electrostatically Actuated Resonant MEMS Sensors Under Parametric Excitation
,”
IEEE Sens. J.
,
7
(
3
), pp.
370
380
.
11.
Welte
,
J.
,
Kniffka
,
T. J.
, and
Ecker
,
H.
,
2013
, “
Parametric Excitation in a Two Degree of Freedom MEMS System
,”
Shock Vib.
,
20
(
6
), pp.
1113
1124
.
12.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics
,
Springer
,
New York
.
13.
Krylov
,
S.
,
Harari
,
I.
, and
Cohen
,
Y.
,
2005
, “
Stabilization of Electrostatically Actuated Microstructures Using Parametric Excitation
,”
J. Micromech. Microeng.
,
15
(
6
), pp.
1188
1204
.
14.
Rugar
,
D.
, and
Grütter
,
P.
,
1991
, “
Mechanical Parametric Amplification and Thermomechanical Noise Squeezing
,”
Phys. Rev. Lett.
,
67
(
6
), pp.
699
702
.
15.
Turner
,
K. L.
,
Miller
,
S. A.
,
Hartwell
,
P. G.
,
MacDonald
,
N. C.
,
Strogatz
,
S. H.
, and
Adams
,
S. G.
,
1998
, “
Five Parametric Resonances in a Microelectromechanical System
,”
Nature
,
396
(
6707
), pp.
149
152
.
16.
Kobrinsky
,
M. J.
,
Deutsch
,
E. R.
, and
Senturia
,
S. D.
,
2000
, “
Effect of Support Compliance and Residual Stress on the Shape of Doubly Supported Surface-Micromachined Beams
,”
J. Microelectromech. Syst.
,
9
(
3
), pp.
361
369
.
17.
Pakdemirli
,
M.
, and
Boyaci
,
H.
,
2002
, “
Effect of Non-Ideal Boundary Conditions on the Vibrations of Continuous Systems
,”
J. Sound Vib.
,
249
(
4
), pp.
815
823
.
18.
Rinaldi
,
G.
,
Packirisamy
,
M.
, and
Stiharu
,
I.
,
2008
, “
Boundary Characterization of MEMS Structures Through Electro-Mechanical Testing
,”
Sens. Actuators, A
,
143
(
2
), pp.
415
422
.
19.
Alkharabsheh
,
S. A.
, and
Younis
,
M. I.
,
2013
, “
Dynamics of MEMS Arches of Flexible Supports
,”
J. Microelectromech. Syst.
,
22
(
1
), pp.
216
224
.
20.
Alkharabsheh
,
S. A.
, and
Younis
,
M. I.
,
2011
, “
The Dynamics of MEMS Arches of Non-Ideal Boundary Conditions
,”
ASME
Paper No. DETC2011-48501.
21.
Boyaci
,
H.
,
2006
, “
Vibrations of Stretched Damped Beams Under Non-Ideal Boundary Conditions
,”
Sadhana
,
31
(
1
), pp.
1
8
.
22.
Rinaldi
,
G.
,
Packirisamy
,
M.
, and
Stiharu
,
I.
,
2007
, “
Quantitative Boundary Support Characterization for Cantilever MEMS
,”
Sensors
,
7
(
10
), pp.
2062
2079
.
23.
Zhong
,
Z. Y.
,
Zhang
,
W. M.
, and
Meng
,
G.
,
2013
, “
Dynamic Characteristics of Micro-Beams Considering the Effect of Flexible Supports
,”
Sensors
,
13
(
12
), pp.
15880
15897
.
24.
MathWorks
,
2016
, “
matlab Function Reference
,” MathWorks, Natick, MA, pp.
6613
6614
.
25.
Moon
,
F. C.
,
1992
,
Chaotic and Fractal Dynamics
,
Wiley Interscience
,
New York
.
26.
Budynas
,
R.
, and
Nisbett
,
K.
,
2011
,
Mechanical Engineering Design
, 9th ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.