The coupling of vibration and fatigue crack growth in a simply supported uniform Euler–Bernoulli beam containing a single-edge crack is analyzed. The fatigue crack length is treated as a generalized coordinate in a model for the mechanical system. This coupled model accounts for the interaction between the beam oscillations and the crack propagation dynamics. Nonlinear characteristics of the beam motion are introduced as loading parameters to the fatigue model to match experimentally observed failure dynamics. The method of averaging is utilized both as an analytical and numerical tool to: (1) show that, for cyclic loading, our fatigue model reduces to the Paris' law and (2) compare the predicted fatigue damage accumulation with the experimental data for chaotic and random loadings. A utility of the fatigue model is demonstrated in estimating fatigue life under irregular loadings.

References

References
1.
Fatemi
,
A.
, and
Yang
,
L.
,
1998
, “
Cumulative Fatigue Damage and Life Prediction Theories: A Survey of the State of the Art for Homogeneous Materials
,”
Int. J. Fatigue
,
20
(
1
), pp.
9
34
.
2.
Carpinteri
,
A.
, ed.,
1994
,
Handbook of Fatigue Crack Propagation in Metallic Structures
,
Elsevier
,
Amsterdam, The Netherlands
.
3.
Miner
,
M.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
,
12
(
3
), pp.
A159
A164
.
4.
Palmgren
,
A.
,
1924
, “
Die lebensdauer von kugellagern
,”
Verfahrenstechnik
,
68
(
14
), pp.
339
341
.
5.
Macha
,
E.
,
Lagoda
,
T.
,
Nieslony
,
A.
, and
Kardas
,
D.
,
2006
, “
Fatigue Life Under Variable-Amplitude Loading According to the Cycle-Counting and Spectral Methods
,”
Mater. Sci.
,
42
(
3
), pp.
416
425
.
6.
Ewalds
,
H. L.
, and
Wanhill
,
R. J. H.
,
1984
,
Fracture Mechanics
,
Edward Arnold
,
University of Michigan, Ann Arbor, MI
.
7.
Dimarogonas
,
A. D.
,
1996
, “
Vibration of Cracked Structures: A State of the Art Review
,”
Eng. Fract. Mech.
,
55
(
5
), pp.
831
857
.
8.
Giry
,
C.
,
Dufour
,
F.
, and
Mazars
,
J.
,
2011
, “
Stress-Based Nonlocal Damage Model
,”
Int. J. Solids Struct.
,
48
(
2526
), pp.
3431
3443
.
9.
Voyiadjis
,
G. Z.
, and
Mozaffari
,
N.
,
2013
, “
Nonlocal Damage Model Using the Phase Field Method: Theory and Applications
,”
Int. J. Solids Struct.
,
50
(
2021
), pp.
3136
3151
.
10.
Cusumano
,
J.
, and
Li
,
Q.
,
2010
, “
Coupled Field Damage Dynamics Via Hamilton's Principle
,”
ASME
Paper No. DETC2010-29078.
11.
Cusumano
,
J.
,
Roy
,
A.
, and
Li
,
Q.
,
2015
, “
Damage Dynamics, Rate Laws, and Failure Statistics Via Hamilton's Principle
,”
Meccanica
,
50
(
1
), pp.
77
98
.
12.
Skorupa
,
M.
,
1999
, “
Load Interaction Effects During Fatigue Crack Growth Under Variable Amplitude Loading—A Literature Review—Part I: Empirical Trends
,”
Fatigue Fract. Eng. Mater. Struct.
,
21
(
8
), pp.
987
1006
.
13.
Skorupa
,
M.
,
1999
, “
Load Interaction Effects During Fatigue Crack Growth Under Variable Amplitude Loading—A Literature Review—Part II: Qualitative Interpretations
,”
Fatigue Fract. Eng. Mater. Struct.
,
22
(
10
), pp.
905
926
.
14.
Kantz
,
H.
, and
Schreiber
,
T.
,
2004
,
Nonlinear Time Series Analysis
,
Cambridge University Press
,
Cambridge, UK
.
15.
Abarbanel
,
H.
,
1996
,
Analysis of Observed Chaotic Data
,
Springer
,
New York
.
16.
Christides
,
S.
, and
Barr
,
A. D. S.
,
1984
, “
One-Dimensional Theory of Cracked Bernoulli-Euler Beams
,”
Int. J. Mech. Sci.
,
26
(
11
), pp.
639
648
.
17.
Shen
,
M.
, and
Pierre
,
C.
,
1990
, “
Natural Modes of Bernoulli–Euler Beams With Symmetric Cracks
,”
J. Sound Vib.
,
138
(
1
), pp.
115
134
.
18.
Nguyen
,
S. H.
,
Falco
,
M.
,
Liu
,
M.
, and
Chelidze
,
D.
,
2014
, “
Different Fatigue Dynamics Under Statistically and Spectrally Similar Deterministic and Stochastic Excitations
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041004
.
19.
Sanders
,
J. A.
,
Verhulst
,
F.
, and
Murdock
,
J.
,
2007
,
Averaging Methods in Nonlinear Dynamical Systems
,
Springer
,
New York
.
20.
Suresh
,
S.
,
1998
,
Fatigue of Materials
,
Cambridge University Press
,
Cambridge, UK
.
21.
Falco
,
M.
,
Liu
,
M.
, and
Chelidze
,
D.
,
2010
, “
A New Fatigue Testing Apparatus Model and Parameter Identification
,”
ASME
Paper No. DETC2010-29107.
22.
ASTM
,
2008
, “
Standard Test Methods for Measurement of Fracture Toughness
,” American Society for Testing and Materials, Philadelphia, PA, Standard No. ASTM-E1820-08a.
23.
Schreiber
,
T.
, and
Schmitz
,
A.
,
1996
, “
Improved Surrogate Data for Nonlinearity Tests
,”
Phys. Rev. Lett.
,
77
(
4
), pp.
635
638
.
24.
Meirovitch
,
L.
,
1996
,
Principles and Techniques of Vibrations
,
Prentice Hall
,
Upper Saddle River, NJ
.
25.
Anderson
,
T. L.
,
1995
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
26.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
2000
,
The Stress Analysis of Cracks Handbook
,
3rd ed.
,
American Society of Mechanical Engineers Press
,
New York
.
You do not currently have access to this content.