In common rotary piezoelectric (PZT) frequency up-converting energy harvesters, impact or nonimpact frequency up-conversion technologies are used. For low separation distances between the magnets in nonimpact cases, when weak excitation is applied, depending on some parameters such as separation distance between the magnets, eccentric proof mass may be unable to overcome the magnetic potential between the magnets, and thus, the extracted power of the harvester lowers. To increase the harvester power output, the use of an additional pair of magnets, called the assisting part, is proposed in this paper. For different harmonic excitations, the generated powers of the harvester with and without assisting part have been compared to each other. It is found that by appropriately adjusting the separation distance, the use of such part can increase the generated power in most cases. Using a real-world multifrequency multi-amplitude excitation, the ability of the proposed idea to increase the extracted power is investigated. It is found that the maximum generated power of the device can effectively increase to more than two times. In order to check the accuracy of the applied mathematical modeling, some experiments have been conducted.

References

References
1.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J.
,
2003
, “
A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
,
26
(
11
), pp.
1131
1144
.
2.
Roundy
,
S.
, and
Wright
,
P. K.
,
2004
, “
A Piezoelectric Vibration Based Generator for Wireless Electronics
,”
Smart Mater. Struct.
,
13
(
5
), pp.
1131
1142
.
3.
Arms
,
S. W.
,
Townsend
,
C. P.
,
Churchill
,
D. L.
,
Galbreath
,
J. H.
, and
Mundell
,
S. W.
,
2005
, “
Power Management for Energy Harvesting Wireless Sensors
,”
Proc. SPIE
,
5763
, pp.
267
275
.
4.
du Plessis
,
A. J.
,
Huigsloot
,
M. J.
, and
Discenzo
,
F. D.
,
2005
, “
Resonant Packaged Piezoelectric Power Harvester for Machinery Health Monitoring
,”
Proc. SPIE
,
5762
, pp.
224
235
.
5.
Inman
,
D. J.
, and
Grisso
,
B. L.
,
2006
, “
Towards Autonomous Sensing
,”
Proc. SPIE
,
6174
, p.
61740T
.
6.
Sanders
,
R. S.
, and
Lee
,
M. T.
,
1996
, “
Implantable Pacemakers
,”
Proc. IEEE
,
84
(
3
), pp.
480
486
.
7.
Bibo
,
A.
,
Abdelkefi
,
A.
, and
Daqaq
,
M. F.
,
2015
, “
Modeling and Characterization of a Piezoelectric Energy Harvester Under Combined Aerodynamic and Base Excitations
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031017
.
8.
Aladwani
,
A.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2015
, “
Piezoelectric Vibration Energy Harvesting From a Two-Dimensional Coupled Acoustic-Structure System With a Dynamic Magnifier
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031002
.
9.
Zou
,
H.-X.
,
Zhang
,
W.-M.
,
Wei
,
K.-X.
,
Li
,
W.-B.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2016
, “
Design and Analysis of a Piezoelectric Vibration Energy Harvester Using Rolling Mechanism
,”
ASME J. Vib. Acoust.
,
138
(
5
), p.
051007
.
10.
Castagnetti
,
D.
,
2015
, “
A Piezoelectric Based Energy Harvester With Dynamic Magnification
,”
ASME
Paper No. SMASIS2015-8812.
11.
Renaud
,
M.
,
Fiorini
,
P.
, and
vanHoof
,
C.
,
2007
, “
Optimization of a Piezoelectric Unimorph for Shock and Impact Energy Harvesting
,”
Smart Mater. Struct.
,
16
(
4
), pp.
1125
1135
.
12.
Renaud
,
M.
,
Fiorini
,
P.
,
Schaijk
,
R. V.
, and
Hoof
,
C. V.
,
2009
, “
Harvesting Energy From the Motion of Human Limbs: The Design and Analysis of an Impact-Based Piezoelectric Generator
,”
Smart Mater. Struct.
,
18
(
3
), p.
035001
.
13.
Kulah
,
H.
, and
Najafi
,
K.
,
2008
, “
Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications
,”
IEEE Sens. J.
,
8
(
3
), pp.
261
268
.
14.
Galchev
,
T.
,
Hanseup
,
K.
, and
Najafi
,
K.
,
2011
, “
Micro Power Generator for Harvesting Low-Frequency and Nonperiodic Vibrations
,”
J. Microelectromech. Syst.
,
20
(
4
), pp.
852
866
.
15.
Gu
,
L.
, and
Livermore
,
C.
,
2011
, “
Impact-Driven, Frequency Up-Converting Coupled Vibration Energy Harvesting Device for Low Frequency Operation
,”
Smart Mater. Struct.
,
20
(
4
), p.
045004
.
16.
Ma
,
X.
,
Wilson
,
A.
,
Rahn
,
C. D.
, and
Trolier-McKinstry
,
S.
,
2016
, “
Efficient Energy Harvesting Using Piezoelectric Compliant Mechanisms: Theory and Experiment
,”
ASME J. Vib. Acoust.
,
138
(
2
), p.
021005
.
17.
Zhang
,
Y.
, and
Cai
,
C. S.
,
2012
, “
A Retrofitted Energy Harvester for Low Frequency Vibrations
,”
Smart Mater. Struct.
,
21
(
7
), p.
075007
.
18.
Zhang
,
Y.
,
Cai
,
C. S.
, and
Kong
,
B.
,
2015
, “
A Low Frequency Nonlinear Energy Harvester With Large Bandwidth Utilizing Magnet Levitation
,”
Smart Mater. Struct.
,
24
(
4
), p.
045019
.
19.
Wei
,
S.
,
Hu
,
H.
, and
He
,
S.
,
2013
, “
Modeling and Experimental Investigation of an Impact-Driven Piezoelectric Energy Harvester From Human Motion
,”
Smart Mater. Struct.
,
22
(
10
), p.
105020
.
20.
Pillatsch
,
P.
,
Yeatman
,
E. M.
, and
Holmes
,
A. S.
,
2012
, “
A Scalable Piezoelectric Impulse-Excited Energy Harvester for Human Body Excitation
,”
Smart Mater. Struct.
,
21
(
11
), p.
115018
.
21.
Pillatsch
,
P.
,
Yeatman
,
E. M.
, and
Holmes
,
A. S.
,
2014
, “
A Piezoelectric Frequency Up-Converting Energy Harvester With Rotating Proof Mass for Human Body Applications
,”
Sens. Actuators, A
,
206
, pp.
178
185
.
22.
Pillatsch
,
P.
,
2013
, “
Piezoelectric Energy Harvesting From Low Frequency and Random Excitation Using Frequency Up-Conversion
,”
Ph.D. thesis
, Imperial College London, London, UK.
23.
Pillatsch
,
P.
,
Yeatman
,
E. M.
, and
Holmes
,
A. S.
,
2013
, “
A Model for Magnetic Plucking of Piezoelectric Beams in Energy Harvesters
,”
17th International Conference on Solid-State Sensors, Actuators and Microsystems
(
TRANSDUCERS & EUROSENSORS XXVII
),
Barcelona
,
Spain
, June 16–20, pp.
1364
1367
.
24.
Ramezanpour
,
R.
,
Nahvi
,
H.
, and
Ziaei-Rad
,
S.
,
2016
, “
A Vibration-Based Energy Harvester Suitable for Low-Frequency, High-Amplitude Environments: Theoretical and Experimental Investigations
,”
J. Intell. Mater. Syst. Struct.
,
27
(
5
), pp.
642
665
.
25.
Ramezanpour
,
R.
,
Nahvi
,
H.
, and
Ziaei-Rad
,
S.
,
2015
, “
Electromechanical Behavior of a Pendulum-Based Piezoelectric Frequency Up-Converting Energy Harvester
,”
J. Sound Vib.
,
370
, pp.
280
305
.
26.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2010
, “
Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator
,”
Physica D
,
239
(
10
), pp.
640
653
.
27.
Yung
,
K. W.
,
Landecker
,
P. B.
, and
Villani
,
D. D.
,
1998
, “
An Analytic Solution for the Force Between Two Magnetic Dipoles
,”
Magn. Electr. Sep.
,
9
(
1
), pp.
39
52
.
28.
EPSRC
,
2015
, “
EH Network Data Repository
,” Engineering and Physical Sciences Research Council, University of Southampton, Southampton, UK. accessed Dec. 12, 2015, http://eh-network.org/data/
You do not currently have access to this content.