This paper addresses the Lyapunov functions and sliding mode control design for two degrees-of-freedom (2DOF) and multidegrees-of-freedom (MDOF) fractional oscillators. First, differential equations of motion for 2DOF fractional oscillators are established by adopting the fractional Kelvin–Voigt constitute relation for viscoelastic materials. Second, a Lyapunov function candidate for 2DOF fractional oscillators is suggested, which includes the potential energy stored in fractional derivatives. Third, the differential equations of motion for 2DOF fractional oscillators are transformed into noncommensurate fractional state equations with six dimensions by introducing state variables with physical significance. Sliding mode control design and adaptive sliding mode control design are proposed based on the noncommensurate fractional state equations. Furthermore, the above results are generalized to MDOF fractional oscillators. Finally, numerical simulations are carried out to validate the above control designs.

References

References
1.
Park
,
S.
,
2001
, “
Analytical Modeling of Viscoelastic Dampers for Structural and Vibration Control
,”
Int. J. Solids Struct.
,
38
(
44
), pp.
8065
8092
.
2.
Diethelm
,
K.
,
2010
,
The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type
,
Springer Verlag
, Berlin, Heidelberg.
3.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.
4.
Padovan
,
J.
,
Chung
,
S.
, and
Guo
,
Y. H.
,
1987
, “
Asymptotic Steady State Behavior of Fractionally Damped Systems
,”
J. Franklin Inst.
,
324
(
3
), pp.
491
511
.
5.
Padovan
,
J.
, and
Guo
,
Y.
,
1988
, “
General Response of Viscoelastic Systems Modelled by Fractional Operators
,”
J. Franklin Inst.
,
325
(
2
), pp.
247
275
.
6.
Beyer
,
H.
, and
Kempfle
,
S.
,
1995
, “
Definition of Physically Consistent Damping Laws With Fractional Derivatives
,”
ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
75
(
8
), pp.
623
635
.
7.
Kempfle
,
S.
,
Schäfer
,
I.
, and
Beyer
,
H.
,
2002
, “
Fractional Calculus Via Functional Calculus: Theory and Applications
,”
Nonlinear Dyn.
,
29
(
1–4
), pp.
99
127
.
8.
Schäfer
,
I.
, and
Kempfle
,
S.
,
2004
, “
Impulse Responses of Fractional Damped Systems
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
61
68
.
9.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2001
, “
Analysis of Rheological Equations Involving More Than One Fractional Parameters by the Use of the Simplest Mechanical Systems Based on These Equations
,”
Mech. Time-Depend. Mater.
,
5
(
2
), pp.
131
175
.
10.
Fukunaga
,
M.
,
2002
, “
On Initial Value Problems of Fractional Differential Equations
,”
Int. J. Appl. Math.
,
9
(
2
), pp.
219
236
.
11.
Fukunaga
,
M.
,
2002
, “
On Uniqueness of the Solutions of Initial Value Problems of Ordinary Fractional Differential Equations
,”
Int. J. Appl. Math.
,
10
(
2
), pp.
177
190
.
12.
Fukunaga
,
M.
,
2003
, “
A Difference Method for Initial Value Problems for Ordinary Fractional Differential Equations, II
,”
Int. J. Appl. Math.
,
11
(
3
), pp.
215
244
.
13.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2002
, “
Control of Initialized Fractional-Order Systems
,”
NASA Technical Report No. 2002-211377
.
14.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2008
, “
Initialization of Fractional-Order Operators and Fractional Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
2
), p.
021101
.
15.
Hartley
,
T. T.
,
Veillette
,
R. J.
,
Lorenzo
,
C. F.
, and
Adams
,
J. L.
,
2013
, “
On the Energy Stored in Fractional-Order Electrical Elements
,”
ASME
Paper No. DETC2013-13498.
16.
Hartley
,
T. T.
,
Trigeassou
,
J.-C.
,
Lorenzo
,
C. F.
, and
Maamri
,
N.
,
2015
, “
Energy Storage and Loss in Fractional-Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061006
.
17.
Hartley
,
T. T.
,
Veillette
,
R. J.
,
Adams
,
J. L.
, and
Lorenzo
,
C. F.
,
2015
, “
Energy Storage and Loss in Fractional-Order Circuit Elements
,”
IET Circuits, Devices Syst.
,
9
(
3
), pp.
227
235
.
18.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2015
, “
Energy Considerations for Mechanical Fractional-Order Elements
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011014
.
19.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2013
, “
Energy Considerations for Fractional Elements
,”
ASME
Paper No. DETC2013-13247.
20.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
,
Academic Press
, San Diego, CA.
21.
Oustaloup
,
A.
,
Moreau
,
X.
, and
Nouillant
,
M.
,
1996
, “
The CRONE Suspension
,”
Control Eng. Pract.
,
4
(
8
), pp.
1101
1108
.
22.
Podlubny
,
I.
,
1999
, “
Fractional-Order Systems and PIλDμ Controllers
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.
23.
Yuan
,
J.
,
Shi
,
B.
, and
Ji
,
W.
,
2013
, “
Adaptive Sliding Mode Control of a Novel Class of Fractional Chaotic Systems
,”
Adv. Math. Phys.
,
2013
, p.
576709
.
24.
Bandyopadhyay
,
B.
, and
Kamal
,
S.
,
2015
,
Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach
,
Springer
, Switzerland.
25.
Ladaci
,
S.
, and
Charef
,
A.
,
2006
, “
On Fractional Adaptive Control
,”
Nonlinear Dyn.
,
43
(
4
), pp.
365
378
.
26.
Shi
,
B.
,
Yuan
,
J.
, and
Dong
,
C.
,
2014
, “
On Fractional Model Reference Adaptive Control
,”
TheScientificWorldJournal
,
2014
, p.
521625
.
27.
Agrawal
,
O. P.
,
2004
, “
A General Formulation and Solution Scheme for Fractional Optimal Control Problems
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
323
337
.
28.
Baleanu
,
D.
,
Machado
,
J. A. T.
, and
Luo
,
A. C. J.
,
2012
, “
A Formulation and Numerical Scheme for Fractional Optimal Control of Cylindrical Structures Subjected to General Initial Conditions
,”
Fractional Dynamics and Control
, Springer Science+Business Media, New York.
29.
Li
,
Y.
,
Chen
,
Y.
, and
Podlubny
,
I.
,
2009
, “
Mittag–Leffler Stability of Fractional Order Nonlinear Dynamic Systems
,”
Automatica
,
45
(
8
), pp.
1965
1969
.
30.
Li
,
Y.
,
Chen
,
Y.
, and
Podlubny
,
I.
,
2010
, “
Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–Leffler Stability
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1810
1821
.
31.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2011
, “
A Lyapunov Approach to the Stability of Fractional Differential Equations
,”
Signal Process.
,
91
(
3
), pp.
437
445
.
32.
Montseny
,
G.
,
1998
, “
Diffusive Representation of Pseudo-Differential Time-Operators
,”
Proc. ESSAIM
,
5
, pp.
159
175
.
33.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
Transients of Fractional-Order Integrator and Derivatives
,”
Signal, Image Video Process.
,
6
(
3
), pp.
359
372
.
34.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
State Variables and Transients of Fractional Order Differential Systems
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3117
3140
.
35.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2013
, “
Lyapunov Stability of Linear Fractional Systems—Part 1: Definition of Fractional Energy
,”
ASME
Paper No. DETC2013-12824.
You do not currently have access to this content.