In this paper, a novel smart vibration energy harvester (VEH) is presented. The harvester automatically adjusts its natural frequency to stay in resonance with ambient vibration. The proposed harvester consists of two piezoelectric cantilever beams, a tiny piezomotor with a movable mass attached to one of the beams, a control unit, and electronics. Thanks to its self-locking feature, the piezomotor does not require energy to fix its movable part, resulting in an improvement in overall energy demand. The operation of the system is optimized in order to maximize the energy efficiency. At each predefined interval, the control unit wakes up, calculates the phase difference between two beams, and if necessary, actuates the piezomotor to move its mass in the appropriate direction. It is shown that the proposed tuning algorithm successfully increases the fractional bandwidth of the harvester from 4% to 10%. The system is able to deliver 83.4% of the total harvested power into usable electrical power, while the piezomotor uses only 2.4% of the harvested power. The presented efficient, autotunable, and self-sufficient harvester is built using off-the-shelf components and it can be easily modified for wide range of applications.

References

References
1.
Dai
,
X.
,
Wen
,
Y.
,
Li
,
P.
,
Yang
,
J.
, and
Li
,
M.
,
2011
, “
Energy Harvesting From Mechanical Vibrations Using Multiple Magnetostrictive/Piezoelectric Composite Transducers
,”
Sens. Actuators, A
,
166
(
1
), pp.
94
101
.
2.
Xie
,
L.
, and
Du
,
R.
,
2013
, “
Frequency Tuning of a Nonlinear Electromagnetic Energy Harvester
,”
ASME J. Vib. Acoust.
,
136
(
1
), p.
011010
.
3.
Wang
,
X.
, and
Lin
,
L.
,
2013
, “
Dimensionless Optimization of Piezoelectric Vibration Energy Harvesters With Different Interface Circuits
,”
Smart Mater. Struct.
,
22
(
8
), p.
085011
.
4.
Wang
,
X.
, and
Xiao
,
H.
,
2013
, “
Dimensionless Analysis and Optimization of Piezoelectric Vibration Energy Harvester
,”
Int. Rev. Mech. Eng.
,
7
(
4
), pp.
607
624
.
5.
Naruse
,
Y.
,
Matsubara
,
N.
,
Mabuchi
,
K.
,
Izumi
,
M.
, and
Suzuki
,
S.
,
2009
, “
Electrostatic Micro Power Generation From Low-Frequency Vibration Such as Human Motion
,”
J. Micromech. Microeng.
,
19
(
9
), p.
094002
.
6.
Shen
,
D.
,
Park
,
J.-H.
,
Noh
,
J.-H.
,
Choe
,
S.-Y.
,
Kim
,
S.-H.
, and
Wikle
,
H.-C.
, III
,
2009
, “
Micromachined PZT Cantilever Based on SOI Structure for Low Frequency Vibration Energy Harvesting
,”
Sens. Actuators, A
,
154
(
1
), pp.
103
108
.
7.
Seddik
,
B. A.
,
Despesse
,
G.
,
Boisseau
,
S.
, and
Defay
,
E.
,
2012
, “
Strategies for Wideband Mechanical Energy Harvester
,”
Small-Scale Energy Harvesting
,
M.
Lallart
, ed.,
InTech
,
Rijeka, Croatia
.
8.
Ferrari
,
M.
,
Ferrari
,
V.
,
Guizzetti
,
M.
,
Marioli
,
D.
, and
Taroni
,
A.
,
2008
, “
Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems
,”
Sens. Actuators, A
,
142
(
1
), pp.
329
335
.
9.
Zhu
,
W. Z.
, and
Livermore
,
C.
,
2015
, “
Passively-Switched, Non-Contact Energy Harvester for Broad Operational Range and Enhanced Durability
,”
J. Phys.: Conf. Ser.
,
660
(
1
), p.
012119
.
10.
Halim
,
M. A.
, and
Park
,
J. Y.
,
2015
, “
Modeling and Experiment of a Handy Motion Driven, Frequency Up-Converting Electromagnetic Energy Harvester Using Transverse Impact by Spherical Ball
,”
Sens. Actuators, A
,
229
, pp.
50
58
.
11.
Lin
,
Z.
, and
Zhang
,
Y.
,
2016
, “
Dynamics of a Mechanical Frequency Up-Converted Device for Wave Energy Harvesting
,”
J. Sound Vib.
,
367
, pp.
170
184
.
12.
Ramezanpour
,
R.
,
Nahvi
,
H.
, and
Ziaei-Rad
,
S.
,
2016
, “
Electromechanical Behavior of a Pendulum-Based Piezoelectric Frequency Up-Converting Energy Harvester
,”
J. Sound Vib.
,
370
, pp.
280
305
.
13.
Miller
,
L. M.
,
Pillatsch
,
P.
,
Halvorsen
,
E.
,
Wright
,
P. K.
,
Yeatman
,
E. M.
, and
Holmes
,
A. S.
,
2013
, “
Experimental Passive Self-Tuning Behavior of a Beam Resonator With Sliding Proof Mass
,”
J. Sound Vib.
,
332
(
26
), pp.
7142
7152
.
14.
Ramlan
,
R.
,
Brennan
,
M. J.
,
Mace
,
B. R.
, and
Kovacic
,
I.
,
2010
, “
Potential Benefits of a Non-Linear Stiffness in an Energy Harvesting Device
,”
Nonlinear Dyn.
,
59
(
4
), pp.
545
558
.
15.
Mann
,
B. P.
, and
Sims
,
N. D.
,
2009
, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
(
1–2
), pp.
513
530
.
16.
Daqaq
,
M. F.
,
2010
, “
Response of Uni-Modal Duffing-Type Harvesters to Random Forced Levitation
,”
J. Sound Vib.
,
329
(
18
), pp.
3621
3631
.
17.
Neiss
,
S.
,
Goldschmidtboeing
,
F.
,
Kroener
,
M.
, and
Woias
,
P.
,
2014
, “
Tunable Nonlinear Piezoelectric Vibration Harvester
,”
J. Phys.: Conf. Ser.
,
557
(
1
), p.
012113
.
18.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2010
, “
Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator
,”
Phys. D
,
239
(
10
), pp.
640
653
.
19.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
,
102
(
8
), p.
080061
.
20.
Ferrari
,
M.
,
Ferrari
,
V.
,
Guizzetti
,
M.
,
Ando
,
B.
,
Baglio
,
S.
, and
Trigona
,
C.
,
2010
, “
Improved Energy Harvesting From Wideband Vibrations by Nonlinear Piezoelectric Converters
,”
Sens. Actuators, A
,
162
(
2
), pp.
425
431
.
21.
Di Monaco
,
F.
,
Tehrani
,
M. G.
,
Elliott
,
S. J.
,
Bonisoli
,
E.
, and
Tornincasa
,
S.
,
2013
, “
Energy Harvesting Using Semi-Active Control
,”
J. Sound Vib.
,
332
(
23
), pp.
6033
6043
.
22.
Edwards
,
B.
,
Aw
,
C. K.
, and
Hu
,
A. P.
,
2016
, “
Mechanical Frequency Up-Conversion for Sub-Resonance, Low-Frequency Vibration Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
27
(
16
), pp.
2145
2159
.
23.
Cao
,
J.
,
Zhou
,
S.
,
Inman
,
D. J.
, and
Lin
,
J.
,
2015
, “
Nonlinear Dynamic Characteristics of Variable Inclination Magnetically Coupled Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021015
.
24.
Ma
,
X.
,
Wilson
,
A.
,
Rahn
,
C. D.
, and
Trolier-McKinstry
,
S.
,
2016
, “
Efficient Energy Harvesting Using Piezoelectric Compliant Mechanisms: Theory and Experiment
,”
ASME J. Vib. Acoust.
,
138
(
2
), p.
021005
.
25.
Gu
,
L.
, and
Livermore
,
C.
,
2010
, “
Passive Self-Tuning Energy Harvester for Extracting Energy From Rotational Motion
,”
Appl. Phys. Lett.
,
97
(
8
), p.
081904
.
26.
Wang
,
Y.-J.
,
Chen
,
C.-D.
,
Sung
,
C.-K.
, and
Li
,
C.
,
2012
, “
Natural Frequency Self-Tuning Energy Harvester Using a Circular Halbach Array Magnetic Disk
,”
J. Intell. Mater. Syst. Struct.
,
23
(
8
), pp.
933
943
.
27.
Boudaoud
,
A.
,
Couder
,
Y.
, and
Amar
,
M. B.
,
1999
, “
A Self-Adaptive Oscillator
,”
Eur. Phys. J. B
,
9
(
1
), pp.
159
165
.
28.
Kozinsky
,
I.
,
2009
, “
Study of Passive Self-Tuning Resonator for Broadband Power Harvesting
,”
PowerMEMS 2009
, Washington, DC, pp.
388
391
.
29.
Geiyer
,
D.
, and
Kauffman
,
J. L.
,
2015
, “
Chaotification as a Means of Broadband Energy Harvesting With Piezoelectric Materials
,”
ASME J. Vib. Acoust.
,
137
(
5
), p.
051005
.
30.
Xiong
,
X.
, and
Oyadiji
,
S. O.
,
2015
, “
Tapered Two-Layer Broadband Vibration Energy Harvesters
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031014
.
31.
Chen
,
L.
,
Jiang
,
W.
,
Panyam
,
M.
, and
Daqaq
,
M. F.
,
2016
, “
A Broadband Internally Resonant Vibratory Energy Harvester
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
061007
.
32.
Mansour
,
M. O.
,
Arafa
,
M. H.
, and
Megahed
,
S. M.
,
2010
, “
Resonator With Magnetically Adjustable Natural Frequency for Vibration Energy Harvesting
,”
Sens. Actuators, A
,
163
(
1
), pp.
297
303
.
33.
Eichhorn
,
C.
,
Goldschmidtboeing
,
F.
, and
Woias
,
P.
,
2009
, “
Bidirectional Frequency Tuning of a Piezoelectric Energy Converter Based on a Cantilever Beam
,”
J. Micromech. Microeng.
,
19
(
9
), p.
094006
.
34.
Turkyilmaz
,
S.
,
Zorlu
,
O.
,
Muhtaroglu
,
A.
, and
Kulah
,
H.
,
2011
, “
An Electromagnetic Micro-Power Generator for Low Frequency Vibrations With Tunable Resonance
,”
Procedia Eng.
,
25
, pp.
729
732
.
35.
Huang
,
S.
, and
Lin
,
K.
,
2012
, “
A Novel Design of a Map-Tuning Piezoelectric Vibration Energy Harvester
,”
Smart Mater. Struct.
,
21
(
8
), p.
085014
.
36.
Aboulfotoh
,
N. A.
,
Arafa
,
M. H.
, and
Megahed
,
S. M.
,
2013
, “
A Self-Tuning Resonator for Vibration Energy Harvesting
,”
Sens. Actuators, A
,
201
, pp.
328
334
.
37.
Hoffmann
,
D.
,
Willmann
,
A.
,
Hehn
,
T.
,
Folkmer
,
B.
, and
Manoli
,
Y.
,
2016
, “
A Self-Adaptive Energy Harvesting System
,”
Smart Mater. Struct.
,
25
(
3
), p.
035013
.
38.
Eichhorn
,
C.
,
Tchagsim
,
R.
,
Wilhelm
,
N.
, and
Woias
,
P.
,
2011
, “
A Smart and Self-Sufficient Frequency Tunable Vibration Energy Harvester
,”
J. Micromech. Microeng.
,
21
(
10
), p.
104003
.
39.
Mide Technology Corp.
,
2010
, “
Mide Piezoelectric Energy Harvesters, Volture™ Rev. 001
,”
Mide Engineering Solutions
,
Medford, MA
, accessed Aug. 1, 2016, http://www.mouser.com/ds/2/606/mide%20technology_volture_datasheet_001-610260.pdf
40.
Piezomotor
,
2006
, “
Product Datasheet: PiezoWave Linear 0.1 N, The PiezoWave™ Motor 2006
,” Piezomotor, Uppsala, Sweden, accessed Aug. 1, 2016, http://www.nrc.com.tw/CAT/PiezoMotor/WL0104A.pdf
41.
Texas Instruments
,
2013
, “
MSP430G2x52 MSP430G2x12 Mixed Signal Microcontroller
,” Texas Instruments Incorporated, Dallas, TX, accessed Aug. 1, 2016, http://www.ti.com/lit/ds/symlink/msp430g2252.pdf
42.
Karadag
,
C. V.
, and
Topaloglu
,
N.
,
2013
, “
A Piezoelectric Cantilever Beam With Tunable Natural Frequency
,”
IWPMA 2013
and
8th Annual Energy Harvesting Workshop
,
Hannover
,
Germany
.
43.
Linear Technology Corp.
,
2010
, “
LTC 3588-1 Nanopower Energy Harvesting Power Supply
,” Linear Technology, Milpitas, CA, accessed Aug. 1, 2016., http://cds.linear.com/docs/en/datasheet/35881fc.pdf
44.
National Instruments
,
2016
, “
NI myDAQ
,”
National Instruments
, Austin, TX, accessed Aug. 1, 2016, http://www.ni.com/mydaq/
45.
Ghaderi
,
R.
, and
Nejat
,
A.
,
2014
, “
Nonlinear Mathematical Modeling of Vibrating Motion of Nanomechanical Cantilever Active Probe
,”
Latin Am. J. Solids Struct.
,
11
(
3
), pp.
369
385
.
You do not currently have access to this content.