Particle damping has the promising potential for attenuating unwanted vibrations in harsh environments especially under high temperatures where conventional damping materials would not be functional. Nevertheless, a limitation of simple particle damper (PD) configuration is that the damping effect is insignificant if the local displacement/acceleration is low. In this research, we investigate the performance of a tuned mass particle damper (TMPD) in which the particle damping mechanism is integrated into a tuned mass damper (TMD) configuration. The essential idea is to combine the respective advantages of these two damping concepts and in particular to utilize the tuned mass damper configuration as a motion magnifier to amplify the energy dissipation capability of particle damper when the local displacement/acceleration of the host structure is low. We formulate a first-principle-based dynamic model of the integrated system and analyze the particle motion by using the discrete element method (DEM). We perform systematic parametric studies to elucidate the damping effect and energy dissipation mechanism of a TMPD. We demonstrate that a TMPD can provide significant vibration suppression capability, essentially outperforming conventional particle damper.

References

References
1.
Jones
,
D. I.
,
2001
,
Handbook of Viscoelastic Vibration Damping
,
Wiley
,
Chichester, UK
.
2.
Friend
,
R. D.
, and
Kinra
,
V. K.
,
2000
, “
Particle Impact Damping
,”
J. Sound Vib.
,
233
(
1
), pp.
93
118
.
3.
Saeki
,
M.
,
2002
, “
Impact Damping With Granular Materials in a Horizontally Vibrating System
,”
J. Sound Vib.
,
251
(
1
), pp.
153
161
.
4.
Mao
,
K.
,
Wang
,
M. Y.
,
Xu
,
Z.
, and
Chen
,
T.
,
2004
, “
DEM Simulation of Particle Damping
,”
Powder Technol.
,
142
(
2
), pp.
154
165
.
5.
Saeki
,
M.
,
2005
, “
Analytical Study of Multi-Particle Damping
,”
J. Sound Vib.
,
281
(
3
), pp.
1133
1144
.
6.
Gharib
,
M.
, and
Karkoub
,
M.
,
2015
, “
Shock-Based Experimental Investigation of the Linear Particle Chain Impact Damper
,”
ASME J. Vib. Acoust.
,
137
(
6
), p.
061012
.
7.
Wu
,
C. J.
,
Liao
,
W. H.
, and
Wang
,
M. Y.
,
2004
, “
Modeling of Granular Particle Damping Using Multiphase Flow Theory of Gas-Particle
,”
ASME J. Vib. Acoust.
,
126
(
2
), pp.
196
201
.
8.
Xu
,
Z. W.
,
Chan
,
K.
, and
Liao
,
W.
,
2004
, “
An Empirical Method for Particle Damping Design
,”
Shock Vib.
,
11
(
5–6
), pp.
647
664
.
9.
Fang
,
X.
, and
Tang
,
J.
,
2006
, “
Granular Damping in Forced Vibration: Qualitative and Quantitative Analyses
,”
ASME J. Vib. Acoust.
,
128
(
4
), pp.
489
500
.
10.
Tijskens
,
E.
,
Ramon
,
H.
, and
Baerdemaeker
,
J. D.
,
2003
, “
Discrete Element Modelling for Process Simulation in Agriculture
,”
J. Sound Vib.
,
266
(
3
), pp.
493
514
.
11.
Mao
,
K.
,
Wang
,
M. Y.
,
Xu
,
Z.
, and
Chen
,
T.
,
2004
, “
Simulation and Characterization of Particle Damping in Transient Vibrations
,”
ASME J. Vib. Acoust.
,
126
(
2
), pp.
202
211
.
12.
Fang
,
X.
,
Tang
,
J.
, and
Luo
,
H.
,
2007
, “
Granular Damping Analysis Using an Improved Discrete Element Approach
,”
J. Sound Vib.
,
308
(
1
), pp.
112
131
.
13.
Cundall
,
P. A.
, and
Strack
,
O. D.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
(
1
), pp.
47
65
.
14.
Lu
,
Z.
,
Masri
,
S. F.
, and
Lu
,
X.
,
2011
, “
Parametric Studies of the Performance of Particle Dampers Under Harmonic Excitation
,”
Struct. Control Health Monit.
,
18
(
1
), pp.
79
98
.
15.
Salueña
,
C.
,
Pöschel
,
T.
, and
Esipov
,
S. E.
,
1999
, “
Dissipative Properties of Vibrated Granular Materials
,”
Phys. Rev. E
,
59
(
4
), p.
4422
.
16.
Liu
,
W.
,
Tomlinson
,
G.
, and
Rongong
,
J.
,
2005
, “
The Dynamic Characterisation of Disk Geometry Particle Dampers
,”
J. Sound Vib.
,
280
(
3
), pp.
849
861
.
17.
Yao
,
B.
,
Chen
,
Q.
,
Xiang
,
H.
, and
Gao
,
X.
,
2014
, “
Experimental and Theoretical Investigation on Dynamic Properties of Tuned Particle Damper
,”
Int. J. Mech. Sci.
,
80
, pp.
122
130
.
18.
Sun
,
J. Q.
,
Jolly
,
M. R.
, and
Norris
,
M. A.
,
1995
, “
Passive, Adaptive and Active Tuned Vibration Absorbers—A Survey
,”
ASME J. Mech. Des.
,
117
(
B
), pp.
234
242
.
19.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2004
, “
Minimax Optimization of Multi-Degree-of-Freedom Tuned-Mass Dampers
,”
J. Sound Vib.
,
272
(
3
), pp.
893
908
.
20.
Febbo
,
M.
, and
Vera
,
S.
,
2008
, “
Optimization of a Two Degree of Freedom System Acting as a Dynamic Vibration Absorber
,”
ASME J. Vib. Acoust.
,
130
(
1
), p.
011013
.
21.
Yang
,
C.
,
Li
,
D.
, and
Cheng
,
L.
,
2011
, “
Dynamic Vibration Absorbers for Vibration Control Within a Frequency Band
,”
J. Sound Vib.
,
330
(
8
), pp.
1582
1598
.
22.
Simonian
,
S.
, and
Brenana
,
S.
,
2006
, “
Tunable Adjustable Multi-Element Hybrid Particle Damper
,”
U.S. Patent Application No. 11/375, 716
.
23.
Ou
,
Q.
,
Chen
,
X.
,
Gutschmidt
,
S.
,
Wood
,
A.
,
Leigh
,
N.
, and
Arrieta
,
A. F.
,
2012
, “
An Experimentally Validated Double-Mass Piezoelectric Cantilever Model for Broadband Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
23
(
2
), pp.
117
126
.
24.
Tsuji
,
Y.
,
Tanaka
,
T.
, and
Ishida
,
T.
,
1992
, “
Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe
,”
Powder Technol.
,
71
(
3
), pp.
239
250
.
25.
Zhang
,
D.
, and
Whiten
,
W.
,
1996
, “
The Calculation of Contact Forces Between Particles Using Spring and Damping Models
,”
Powder Technol.
,
88
(
1
), pp.
59
64
.
26.
Mishra
,
B.
, and
Murty
,
C.
,
2001
, “
On the Determination of Contact Parameters for Realistic DEM Simulations of Ball Mills
,”
Powder Technol.
,
115
(
3
), pp.
290
297
.
27.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
28.
Verlet
,
L.
,
1967
, “
Computer ‘Experiments' on Classical Fluids—I: Thermodynamical Properties of Lennard-Jones Molecules
,”
Phys. Rev.
,
159
(
1
), p.
98
.
29.
Zhou
,
W.
,
Penamalli
,
G. R.
, and
Zuo
,
L.
,
2012
, “
An Efficient Vibration Energy Harvester With a Multi-Mode Dynamic Magnifier
,”
Smart Mater. Struct.
,
21
(
1
), p.
015014
.
You do not currently have access to this content.