This paper investigates the problem of optimally locating passive vibration isolators to minimize unwanted vibration caused by exogenous disturbance forces. The stiffness and damping parameters of the isolators are assumed to be known, leaving the isolator locations, which are nonlinearly related to system states, as unknown optimization variables. An approach for reformulating the nonlinear isolator placement problem as a linear time-invariant (LTI) feedback control problem, by linking fictitious control forces to fictitious measured outputs using a nonzero feedforward term, is proposed. Accordingly, the isolator locations show up within a static output feedback gain matrix which can be optimized, using methods from optimal control theory, to minimize the H2 and/or H norms of transfer functions representing unwanted vibration. The proposed framework also allows well-established LTI control theories to be applied to the analyses of the optimal isolator placement problem and its results. The merits of the proposed approach are demonstrated using single and multivariable case studies related to isolator placement in precision manufacturing machines. However, the framework is applicable to optimal placement of passive isolators, suspensions, or dampers in automotive, aerospace, civil, and other applications.

References

References
1.
Hrovat
,
D.
,
1993
, “
Applications of Optimal Control to Advanced Automotive Suspension Design
,”
ASME J. Dyn. Syst., Meas., Control
,
115
(
2B
), pp.
328
342
.
2.
Yu
,
Y.
,
Naganathan
,
N. G.
, and
Dukkipati
,
R. V.
,
2001
, “
A Literature Review of Automotive Vehicle Engine Mounting Systems
,”
Mech. Mach. Theory
,
36
(
1
), pp.
123
142
.
3.
Verros
,
G.
,
Natsiavas
,
S.
, and
Papadimitriou
,
C.
,
2005
, “
Design Optimization of Quarter-Car Models With Passive and Semi-Active Suspensions Under Random Road Excitation
,”
J. Vib. Control
,
11
(
5
), pp.
581
606
.
4.
Swanson
,
D. A.
,
Wu
,
H. T.
, and
Ashrafiuon
,
H.
,
1993
, “
Optimization of Aircraft Engine Suspension Systems
,”
J. Aircr.
,
30
(
6
), pp.
979
984
.
5.
Ahn
,
Y. K.
,
Jin
,
D. S.
, and
Bo
,
S. Y.
,
2003
, “
Optimal Design of Engine Mount Using an Artificial Life Algorithm
,”
J. Sound Vib.
,
261
(
2
), pp.
309
328
.
6.
Preumont
,
A.
,
Horodinca
,
M. I.
,
Romanescu
,
I.
,
De Marneffe
,
B.
,
Avraam
,
M.
,
Deraemaeker
,
A.
,
Bossens
,
F.
, and
Hanieh
,
A. A.
,
2007
, “
A Six-Axis Single-Stage Active Vibration Isolator Based on Stewart Platform
,”
J. Sound Vib.
,
300
(
3
), pp.
644
661
.
7.
Kelly
,
J. M.
,
1986
, “
Aseismic Base Isolation: Review and Bibliography
,”
Soil Dyn. Earthquake Eng.
,
5
(
4
), pp.
202
216
.
8.
Buckle
,
I. G.
, and
Mayes
,
R. L.
,
1990
, “
Seismic Isolation: History, Application, and Performance—A World View
,”
Earthquake Spectra
,
6
(
2
), pp.
161
201
.
9.
Lee-Glauser
,
G. J.
,
Ahmadi
,
G.
, and
Horta
,
L. G.
,
1997
, “
Integrated Passive/Active Vibration Absorber for Multistory Buildings
,”
J. Struct. Eng.
,
123
(
4
), pp.
499
504
.
10.
DeBra
,
D. B.
,
1992
, “
Vibration Isolation of Precision Machine Tools and Instruments
,”
CIRP Ann.—Manuf. Technol.
,
41
(
2
), pp.
711
718
.
11.
Rivin
,
E. I.
,
1995
, “
Vibration Isolation of Precision Equipment
,”
Precis. Eng.
,
17
(
1
), pp.
41
56
.
12.
Schellekens
,
P.
,
Rosielle
,
N.
,
Vermeulen
,
H.
,
Vermeulen
,
M. M.
,
Wetzels
,
S. F.
, and
Pril
,
W.
,
1998
, “
Design for Precision: Current Status and Trends
,”
CIRP Ann.—Manuf. Technol.
,
47
(
2
), pp.
557
586
.
13.
Karnopp
,
D.
,
1995
, “
Active and Semi-Active Vibration Isolation
,”
ASME J. Vib. Acoust.
,
117
(B), pp.
177
185
.
14.
Leo
,
D. J.
, and
Inman
,
D. J.
,
1999
, “
A Quadratic Programming Approach to the Design of Active–Passive Vibration Isolation Systems
,”
J. Sound Vib.
,
220
(
5
), pp.
807
825
.
15.
Li
,
T. H.
, and
Pin
,
K. Y.
,
2000
, “
Evolutionary Algorithms for Passive Suspension Systems
,”
JSME Int. J., Ser. C
,
43
(
3
), pp.
537
544
.
16.
Singh
,
M. P.
, and
Moreschi
,
L. M.
,
2002
, “
Optimal Placement of Dampers for Passive Response Control
,”
Earthquake Eng. Struct. Dyn.
,
31
(
4
), pp.
955
976
.
17.
Ahn
,
Y. K.
,
Kim
,
Y. C.
,
Yang
,
B. S.
,
Ahmadian
,
M.
,
Ahn
,
K. K.
, and
Morishita
,
S.
,
2005
, “
Optimal Design of an Engine Mount Using an Enhanced Genetic Algorithm With Simplex Method
,”
Veh. Syst. Dyn.
,
43
(
1
), pp.
57
81
.
18.
Okwudire
,
C. E.
, and
Lee
,
J.
,
2013
, “
Minimization of the Residual Vibrations of Ultra-Precision Manufacturing Machines Via Optimal Placement of Vibration Isolators
,”
Precis. Eng.
,
37
(
2
), pp.
425
435
.
19.
Lee
,
J.
, and
Okwudire
,
C. E.
,
2016
, “
Reduction of Vibrations of Passively-Isolated Ultra-Precision Manufacturing Machines Using Mode Coupling
,”
Precis. Eng.
,
43
(
1
), pp.
164
177
.
20.
Lin
,
Y.
, and
Zhang
,
Y.
,
1989
, “
Suspension Optimization by a Frequency Domain Equivalent Optimal Control Algorithm
,”
J. Sound Vib.
,
133
(
2
), pp.
239
249
.
21.
Lin
,
Y.
,
Luo
,
W.
, and
Zhang
,
Y. M.
,
1990
, “
A New Method for the Optimization of a Vibration Isolation System
,”
ASME J. Vib. Acoust.
,
112
(
3
), pp.
413
416
.
22.
Gluck
,
N.
,
Reinhorn
,
A. M.
,
Gluck
,
J.
, and
Levy
,
R.
,
1996
, “
Design of Supplemental Dampers for Control of Structures
,”
J. Struct. Eng.
,
122
(
12
), pp.
1394
1399
.
23.
Subrahmanyan
,
P. K.
, and
Trumper
,
D. L.
,
2000
, “
Synthesis of Passive Vibration Isolation Mounts for Machine Tools a Control Systems Paradigm
,”
American Control Conference
,
(ACC)
, Chicago, IL, June 28–30, pp.
2886
2891
.
24.
Yang
,
J. N.
,
Lin
,
S.
,
Kim
,
J. H.
, and
Agrawal
,
A. K.
,
2002
, “
Optimal Design of Passive Energy Dissipation Systems Based on H∞ and H2 Performances
,”
Earthquake Eng. Struct. Dyn.
,
31
(
4
), pp.
921
936
.
25.
Lopez Garcia
,
D.
, and
Soong
,
T. T.
,
2002
, “
Efficiency of a Simple Approach to Damper Allocation in MDOF Structures
,”
J. Struct. Control
,
9
(
1
), pp.
19
30
.
26.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2003
, “
Structured H2 Optimization of Vehicle Suspensions Based on Multi-Wheel Models
,”
Veh. Syst. Dyn.
,
40
(
5
), pp.
351
371
.
27.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2006
, “
The Two-Degree-of-Freedom Tuned-Mass Damper for Suppression of Single-Mode Vibration Under Random and Harmonic Excitation
,”
ASME J. Vib. Acoust.
,
128
(
1
), pp.
56
65
.
28.
Bağdatlı
,
S. M.
,
Okwudire
,
C. E.
, and
Ulsoy
,
A. G.
,
2014
, “
Linear Quadratic Design of Passive Vibration Isolators
,”
ASME
Paper No. DSCC2014-6142.
29.
Morris
,
K.
, and
Yang
,
S.
,
2015
, “
Comparison of Actuator Placement Criteria for Control of Structures
,”
J. Sound Vib.
,
353
(
1
), pp.
1
18
.
30.
Ghasemi
,
A. H.
,
Lee
,
J.
, and
Okwudire
,
C. E.
,
2015
, “
A Control Theoretic Framework for Optimally Locating Passive Vibration Isolators to Minimize Residual Vibration
,”
ASME
Paper No. DSCC2015-9871.
31.
Warner
,
E. C.
, and
Scruggs
,
J. T.
,
2015
, “
Control of Vibratory Networks With Passive and Regenerative Systems
,”
American Control Conference
,
(ACC)
, Chicago, IL, July 1–3, pp.
5502
5508
.
32.
Scruggs
,
J. T.
,
2007
, “
Multi-Objective Optimization of Regenerative Damping Systems in Vibrating Structures
,”
American Control Conference
,
(ACC '07)
, New York, July 9–13, pp.
2672
2677
.
33.
Warner
,
E. C.
, and
Scruggs
,
J. T.
,
2015
, “
Regeneratively-Constrained LQG Control of Vibration Networks With Polytopic Model Uncertainty
,”
IEEE Conference on Control Applications
(CCA)
, Sydney, NSW, Australia, Sept. 21–23, pp.
1498
1504
.
34.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2007
,
Multivariable Feedback Control: Analysis and Design
, Vol.
2
,
Wiley
,
New York
.
35.
Asami
,
T.
,
Nishihara
,
O.
, and
Baz
,
A. M.
,
2002
, “
Analytical Solutions to H∞ and H2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
284
295
.
36.
Kim
,
C. J.
,
Oh
,
J. S.
, and
Park
,
C. H.
,
2014
, “
Modelling Vibration Transmission in the Mechanical and Control System of a Precision Machine
,”
CIRP Ann.—Manuf. Technol.
,
63
(
1
), pp.
349
352
.
37.
Braun
,
S. G.
,
Ewins
,
D. J.
, and
Rao
,
S. S.
,
2002
,
Encyclopedia of Vibration
,
Academic Press
, Cambridge, MA, pp.
1490
1491
.
38.
Dullerud
,
G. E.
, and
Paganini
,
F.
,
2013
,
A Course in Robust Control Theory: A Convex Approach
, Vol.
36
,
Springer Science and Business Media
, New York.
39.
Rivin
,
E. I.
,
2006
, “
Vibration Isolation of Precision Objects
,”
Sound Vib.
,
40
(
7
), pp.
12
20
.
40.
Piersol
,
A.
, and
Paez
,
T.
,
2010
,
Harris' Shock and Vibration Handbook
,
6th ed.
, Vol.
39
,
McGraw-Hill
, New York, pp.
13
39
.
41.
TMC
,
2011
, “
Precision Vibration Isolation Systems: Technical Background
,” Technical Manufacturing Corp., Peabody, MA, accessed Jan. 21, 2016, www.techmfg.com/pdf/TMC%20Techical%20Background%202011.pdf
You do not currently have access to this content.