The stability of an axially moving string system subjected to parametric excitation resulting from speed fluctuations has been examined in this paper. The time-dependent velocity is assumed to be a harmonically varying function around a (low) constant mean speed. The method of characteristic coordinates in combination with the two timescales perturbation method is used to compute the first-order approximation of the solutions of the equations of motion that governs the transverse vibrations of an axially moving string. It turns out that the system can give rise to resonances when the velocity fluctuation frequency is equal (or close) to an odd multiple of the natural frequency of the system. The stability conditions are investigated analytically in terms of the displacement-response and the energy of the system near the resonances. The effects of the detuning parameter on the amplitudes of vibrations and on the energy of the system are also presented through numerical simulations.

References

References
1.
Mahalingam
,
S.
,
1957
, “
Transverse Vibrations of Power Transmission Chains
,”
Br. J. Appl. Phys.
,
8
(
4
), pp.
145
148
.
2.
Mote
,
C. D.
,
1965
, “
A Study of Bandsaw Vibrations
,”
J. Franklin Inst.
,
279
(
6
), pp.
430
444
.
3.
Mote
,
C. D.
,
1968
, “
Parametric Excitation of an Axially Moving String
,”
ASME J. Appl. Mech.
,
35
(1), pp.
171
172
.
4.
Pakdemirli
,
M.
, and
Ulsoy
,
A. G.
,
1997
, “
Stability Analysis of an Axially Accelerating String
,”
J. Sound Vib.
,
203
(
5
), pp.
815
832
.
5.
van Horssen
,
W. T.
, and
Ponomareva
,
S. V.
,
2005
, “
On the Construction of the Solution of an Equation Describing an Axially Moving String
,”
J. Sound Vib.
,
287
(
1–2
), pp.
359
366
.
6.
Suweken
,
G.
, and
van Horssen
,
W. T.
,
2003
, “
On the Weakly Nonlinear, Transversal Vibrations of a Conveyor Belt With a Low and Time-Varying Velocity
,”
Nonlinear Dyn.
,
31
(
2
), pp.
197
223
.
7.
Sandilo
,
S. H.
, and
van Horssen
,
W. T.
,
2012
, “
On Boundary Damping for an Axially Moving Tensioned Beam
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
0110051
.
8.
Suweken
,
G.
, and
van Horssen
,
W. T.
,
2003
, “
On the Transversal Vibrations of a Conveyor Belt With a Low and Time-Varying Velocity. Part I: The String-Like Case
,”
J. Sound Vib.
,
264
(
1
), pp.
117
133
.
9.
Ponomareva
,
S. V.
, and
van Horssen
,
W. T.
,
2007
, “
On Transversal Vibrations of an Axially Moving String With a Time-Varying Velocity
,”
Nonlinear Dyn.
,
50
(▪), pp.
315
323
.
10.
Öz
,
H. R.
, and
Boyaci
,
H.
,
2000
, “
Transverse Vibrations of Tensioned Pipes Conveying Fluid With Time-Dependent Velocity
,”
J. Sound Vib.
,
236
(
2
), pp.
259
276
.
11.
Naguleswaran
,
S.
, and
Williams
,
C. J. H.
,
1968
, “
Lateral Vibration of Band-Saw Blades, Pulley Belts and the Like
,”
Int. J. Mech. Sci.
,
10
(
11
), pp.
239
250
.
12.
Ariartnam
,
S.
, and
Asokanthan
,
S.
,
1987
, “
Dynamic Stability of Chain Drives
,”
ASME J. Appl. Mech.
,
109
(
3
), pp.
412
418
.
13.
Mockensturm
,
E. M.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Stability and Limit Cycles of Parametrically Excited, Axially Moving Strings
,”
ASME J. Vib. Acoust.
,
118
(
1
), pp.
346
351
.
14.
Miranker
,
W. L.
,
1960
, “
The Wave Equation in a Medium in Motion
,”
IBM J. Res. Dev.
,
4
(
1
), pp.
36
42
.
15.
Mote
,
C. D.
,
1975
, “
Stability of Systems Transporting Accelerating Axially Moving Materials
,”
ASME J. Dyn. Syst., Meas., Control
,
97
(
1
), pp.
96
98
.
16.
Zhu
,
W. D.
,
Song
,
X. K.
, and
Zheng
,
N. A.
,
2011
, “
Dynamic Stability of a Translating String With a Sinusoidally Varying Velocity
,”
ASME J. Appl. Mech.
,
78
(
1
), p.
0610211
.
17.
Pakdemirli
,
M.
,
Ulsoy
,
A. G.
, and
Ceranoglu
,
A.
,
1994
, “
Transverse Vibration of an Axially Accelerating String
,”
J. Sound Vib.
,
169
(
2
), pp.
179
196
.
18.
Chen
,
L. Q.
,
Zhang
,
N. H.
, and
Zu
,
J. W.
, ▪, “
Bifurcation and Chaos of an Axially Moving Visco-Elastic Strings
,”
Chaos
, Solitons Fractals,
29
(
2
), pp. ▪–▪.
19.
Ponomareva
,
S. V.
, and
van Horssen
,
W. T.
,
2009
, “
On the Transversal Vibrations of an Axially Moving Continuum With a Time-Varying Velocity: Transient From String to Beam Behavior
,”
J. Sound Vib.
,
325
(
4–5
), pp.
959
973
.
20.
Sandilo
,
S. H.
, and
van Horssen
,
W. T.
,
2014
, “
On Variable Length Induced Vibrations of a Vertical String
,”
J. Sound Vib.
,
333
(
11
), pp.
2432
2449
.
21.
Malookani
,
R. A.
, and
van Horssen
,
W. T.
,
2015
, “
On Resonances and the Applicability of Galerkin's Truncation Method for an Axially Moving String With Time-Varying Velocity
,”
J. Sound Vib.
,
344
(▪), pp.
1
17
.
22.
Malookani
,
R. A.
, and
van Horssen
,
W. T.
,
2016
, “
On the Asymptotic Approximation of the Solution of an Equation for a Non-Constant Axially Moving String
,”
J. Sound Vib.
,
367
(▪), pp.
203
218
.
23.
Gaiko
,
N. V.
, and
van Horssen
,
W. T.
,
2016
, “
On Transversal Oscillations of a Vertically Translating String With Small Time-Harmonic Length Variations
,”
J. Sound Vib.
,
383
(▪), pp.
339
348
.
24.
Zhu
,
W. D.
, and
Guo
,
B. Z.
,
1998
, “
Free and Forced Vibration of an Axially Moving String With an Arbitrary Velocity Profile
,”
ASME J. Appl. Mech.
,
65
(
3
), pp.
901
907
.
25.
Suweken
,
G.
, ▪, “
A Mathematical Analysis of a Belt System With a Low and Time-Varying Velocity
,” Ph.D. thesis, TU Delft, Delft, The Netherlands.
26.
van Horssen
,
W. T.
,
1992
, “
Asymptotics for a Class of Weakly Nonlinear Wave Equations With Applications to Some Problems
,”
First World Congress of Nonlinear Analysis
, Vol.
48
, pp.
19
26
.
27.
Darmawijoyo
,
van Horssen
,
W. T.
, and
Celément
,
P.
,
2003
, “
On a Rayleigh Wave Equation With Boundary Damping
,”
Nonlinear Dyn.
,
33
(4), pp.
399
429
.
28.
Strauss
,
W. A.
,
1992
,
Partial Differential Equations, An Introduction
,
Wiley
,
New York, NY
.
You do not currently have access to this content.