Electromechanical (EM) signature techniques have raised a huge interest in the structural health-monitoring community. These methods aim at assessing structural damages and sensors degradation by analyzing the EM responses of piezoelectric components bonded to aeronautic structures. These structures are subjected simultaneously to static loads and temperature variations that affect the metrics commonly used for damage detection and sensor diagnostics. However, the effects of load and temperature on these metrics have mostly been addressed separately. This paper presents experimentations conducted to investigate the simultaneous influence of static load and temperature on these metrics for two kinds of piezoelectric elements (lead zirconate titanate (PZT) and macrofiber composite (MFC)) bonded on sandwich composite materials, for the full range of real-life conditions encountered in aeronautics. Results obtained indicate that both factors affect the metrics in a coupled manner in particular due to the variations of the mechanical properties of the bonding layer when crossing its glass transition temperature. Furthermore, both piezoelectric elements globally behave similarly when subjected to temperature variations and static loads. Simultaneous accounting of both temperature and static load is thus needed in practice in order to design reliable structural health-monitoring systems based on these metrics.

References

References
1.
Park
,
G.
,
Sohn
,
H.
,
Farrar
,
C. R.
, and
Inman
,
D. J.
,
2003
, “
Overview of Piezoelectric Impedance-Based Health Monitoring and Path Forward
,”
Shock Vib. Dig.
,
35
(
6
), pp.
451
463
.
2.
Park
,
S.
,
Park
,
G.
,
Yun
,
C. B.
, and
Farrar
,
C. R.
,
2009
, “
Sensor Self-Diagnosis Using a Modified Impedance Model for Active Sensing-Based Structural Health Monitoring
,”
Struct. Health Monit.
,
8
(
1
), pp.
71
82
.
3.
Annamdas
,
V. G. M.
, and
Soh
,
C. K.
,
2010
, “
Application of Electromechanical Impedance Technique for Engineering Structures: Review and Future Issues
,”
J. Intell. Mater. Syst. Struct.
,
21
(
1
), pp.
41
59
.
4.
Annamdas
,
V. G. M.
, and
Radhika
,
M. A.
,
2013
, “
Electromechanical Impedance of Piezoelectric Transducers for Monitoring Metallic and Non-Metallic Structures: A Review of Wired, Wireless and Energy-Harvesting Methods
,”
J. Intell. Mater. Syst. Struct.
,
24
(
9
), pp.
1021
1042
.
5.
Yang
,
Y. W.
,
Lim
,
Y. Y.
, and
Soh
,
C. K.
,
2008
, “
Practical Issues Related to the Application of the Electromechanical Impedance Technique in the Structural Health Monitoring of Civil Structures—I: Experiment
,”
Smart Mater. Struct.
,
17
(
3
), p.
035008
.
6.
Qing
,
X. L. P.
,
Beard
,
S. J.
,
Kumar
,
A.
,
Sullivan
,
K.
,
Aguilar
,
R.
,
Merchant
,
M.
, and
Taniguchi
,
M.
,
2008
, “
The Performance of a Piezoelectric-Sensor-Based SHM System Under a Combined Cryogenic Temperature and Vibration Environment
,”
Smart Mater. Struct.
,
17
(
5
), p.
055010
.
7.
Lin
,
B.
,
Giurgiutiu
,
V.
,
Pollock
,
P.
,
Xu
,
B. L.
, and
Doane
,
J.
,
2010
, “
Durability and Survivability of Piezoelectric Wafer Active Sensors on Metallic Structure
,”
AIAA J.
,
48
(
3
), pp.
635
643
.
8.
Yang
,
Y.
, and
Miao
,
A.
,
2008
, “
Effect of External Vibration on PZT Impedance Signature
,”
Sensors
,
8
(
11
), pp.
6846
6859
.
9.
Sepehry
,
N.
,
Shamshirsaz
,
M.
, and
Bastani
,
A.
,
2011
, “
Experimental and Theoretical Analysis in Impedance-Based Structural Health Monitoring With Varying Temperature
,”
Struct. Health Monit.
,
10
(
6
), pp.
573
585
.
10.
Overly
,
T. G.
,
Park
,
G.
,
Farinholt
,
K. M.
, and
Farrar
,
C. R.
,
2009
, “
Piezoelectric Active-Sensor Diagnostics and Validation Using Instantaneous Baseline Data
,”
IEEE Sens. J.
,
9
(
11
), pp.
1414
1421
.
11.
Grisso
,
B. L.
, and
Inman
,
D. J.
,
2010
, “
Temperature Corrected Sensor Diagnostics for Impedance-Based SHM
,”
J. Sound Vib.
,
329
(
12
), pp.
2323
2336
.
12.
Koo
,
K. Y.
,
Park
,
S.
,
Lee
,
J. J.
, and
Yun
,
C. B.
,
2009
, “
Automated Impedance-Based Structural Health Monitoring Incorporating Effective Frequency Shift for Compensating Temperature Effects
,”
J. Intell. Mater. Syst. Struct.
,
20
(
4
), pp.
367
377
.
13.
Zhou
,
D.
,
Kim
,
J. K.
,
Ha
,
S. H.
,
Quesenberry
,
J. D.
, and
Inman
,
D. J.
,
2009
, “
A System Approach for Temperature Dependency of Impedance-Based Structural Health Monitoring
,”
Proc. SPIE
,
7293
, p.
72930U
.
14.
Balmes
,
E.
,
Guskov
,
M.
,
Rebillat
,
M.
, and
Mechbal
,
N.
,
2014
, “
Effects of Temperature on the Impedance of Piezoelectric Actuators Used for SHM
,”
14th Symposium on Vibration, Shock and Noise (VISHNO)
, pp.
1
6
.
15.
Baptista
,
F. G.
,
Budoya
,
D. E.
,
de Almeida
,
V. A. D.
, and
Ulson
,
J. A. C.
,
2014
, “
An Experimental Study on the Effect of Temperature on Piezoelectric Sensors for Impedance-Based Structural Health Monitoring
,”
Sensors
,
14
(
1
), pp.
1208
1227
.
16.
Buethe
,
I.
,
Eckstein
,
B.
, and
Fritzen
,
C. P.
,
2014
, “
Model-Based Detection of Sensor Faults Under Changing Temperature Conditions
,”
Struct. Health Monit.
,
13
(
2
), pp.
109
119
.
17.
Stancalie
,
A.
,
Sporea
,
D.
,
Malinowski
,
P.
,
Mieloszyk
,
M.
,
Opoka
,
S.
,
Wandowski
,
T.
, and
Ostachowicz
,
W.
,
2015
, “
Influence of Support Conditions and Temperature on the EMI Characteristics
,”
J. Phys.: Conf. Ser.
,
628
(
1
), p.
012112
.
18.
Annamdas
,
V. G. M.
,
Yang
,
Y. W.
, and
Soh
,
C. K.
,
2007
, “
Influence of Loading on the Electromechanical Admittance of Piezoceramic Transducers
,”
Smart Mater. Struct.
,
16
(
5
), pp.
1888
1897
.
19.
Lim
,
Y. Y.
, and
Soh
,
C. K.
,
2012
, “
Effect of Varying Axial Load Under Fixed Boundary Condition on Admittance Signatures of Electromechanical Impedance Technique
,”
J. Intell. Mater. Syst. Struct.
,
23
(
7
), pp.
815
826
.
20.
Phillips
,
R.
,
Zhu
,
X.
, and
di Scalea
,
F. L.
,
2012
, “
The Influence of Stress on Electro-Mechanical Impedance Measurements in Rail Steel
,”
Mater. Eval.
,
70
(
10
), pp.
1213
1218
.
21.
Radhika
,
M.
, and
Annamdas
,
V.
,
2013
, “
Experimental Studies on Structural Load Monitoring Using Piezoelectric Transducer Based Electromechanical Impedance Method
,”
Sci. J. Rev.
,
2
(
1
), pp.
37
50
.
22.
Yang
,
J.
,
Zhu
,
H.
,
Wang
,
D.
, and
Ai
,
D.
,
2015
, “
The Compensation Technique of Tensile Force Effect on the Electro-Mechanical Impedance Method for Structural Health Monitoring
,”
J. Intell. Mater. Syst. Struct.
,
26
(
18
), pp.
2477
2488
.
23.
Lim
,
H. J.
,
Kim
,
M. K.
,
Sohn
,
H.
, and
Park
,
C. Y.
,
2011
, “
Impedance Based Damage Detection Under Varying Temperature and Loading Conditions
,”
NDT&E Int.
,
44
(
8
), pp.
740
750
.
24.
Zhu
,
X.
,
Phillips
,
R.
, and
di Scalea
,
F. L.
,
2013
, “
Axial Stress Determination Using Impedance-Based Method and Its Application on the Thermal Stresses Measurement in Continuous Welded Rail
,”
Proc. SPIE
,
8695
, p.
86951N
.
25.
Zhu
,
X.
,
di Scalea
,
F. L.
, and
Fateh
,
M.
,
2015
, “
On the Study of the Influences of Temperature and Axial Load to the Impedance-Based Structural Health Monitoring System
,”
11th International Workshop on Advanced Materials and Smart Structures Technology
, University of Illinois Urbana-Champaign, Champaign, IL, Aug. 1–2.
26.
Xu
,
D.
,
Banerjee
,
S.
,
Wang
,
Y.
,
Huang
,
S.
, and
Cheng
,
X.
,
2015
, “
Temperature and Loading Effects of Embedded Smart Piezoelectric Sensor for Health Monitoring of Concrete Structures
,”
Constr. Build. Mater.
,
76
, pp.
187
193
.
27.
Giurgiutiu
,
V.
, and
Zagrai
,
A.
,
2005
, “
Damage Detection in Thin Plates and Aerospace Structures With the Electro-Mechanical Impedance Method
,”
Struct. Health Monit.
,
4
(
2
), pp.
99
118
.
28.
Liu
,
X. H.
,
2009
, “
Robust Damage Metric in Terms of Magnitude and Phase for Impedance Based Structural Health Monitoring
,”
Struct. Health Monit.
,
8
(
6
), p.
573
.
29.
Giurgiutiu
,
V.
, and
Zagrai
,
A. N.
,
2002
, “
Embedded Self-Sensing Piezoelectric Active Sensors for On-Line Structural Identification
,”
ASME J. Vib. Acoust.
,
124
(
1
), pp.
116
125
.
30.
Park
,
G.
,
Farrar
,
C. R.
,
Rutherford
,
A. C.
, and
Robertson
,
A. N.
,
2006
, “
Piezoelectric Active Sensor Self-Diagnostics Using Electrical Admittance Measurements
,”
ASME J. Vib. Acoust.
,
128
(
4
), pp.
469
476
.
31.
Mulligan
,
K. R.
,
Quaegebeur
,
N.
,
Ostiguy
,
P. C.
,
Masson
,
P.
, and
Letourneau
,
S.
,
2013
, “
Comparison of Metrics to Monitor and Compensate for Piezoceramic Debonding in Structural Health Monitoring
,”
Struct. Health Monit.
,
12
(
2
), pp.
153
168
.
32.
Peairs
,
D. M.
,
Park
,
G.
, and
Inman
,
D. J.
,
2004
, “
Improving Accessibility of the Impedance-Based Structural Health Monitoring Method
,”
J. Intell. Mater. Syst. Struct.
,
15
(
2
), pp.
129
139
.
You do not currently have access to this content.