Microelectromechanical systems (MEMS) based cantilever beams have been widely used in various sensing applications. Previous studies have aimed at increasing the sensitivity of biosensors by reducing the size of cantilever beams to nanoscale. However, the influence of nonuniform cantilever beams on mass sensitivity has rarely been investigated. In this paper, we discuss the mass sensitivity with respect to linear and nonlinear response of nonuniform cantilever beam with linear and quartic variation in width. To do the analysis, we use the nonlinear Euler–Bernoulli beam equation with harmonic forcing. Subsequently, we derive the mode shape corresponding to linear, undamped, free vibration case for different types of beams with a tip mass at the end. After applying the boundary conditions, we obtain the resonance frequencies corresponding to various magnitudes of tip mass for different kinds of beams. To do the nonlinear analysis, we use the Galerkin approximation and the method of multiple scales (MMS). Analysis of linear response indicates that the nondimensional mass sensitivity increases considerably by changing the planar geometry of the beam as compared to uniform beam. At the same time, sensitivity further increases when the nonuniform beam is actuated in higher modes. Similarly, the frequency shift of peak amplitude of nonlinear response for a given nondimensional tip mass increases exponentially and decreases quadratically with tapering parameter, α, for diverging and converging nonuniform beam with quartic variation in width, respectively. For the converging beam, we also found an interesting monotonically decreasing and increasing behavior of mass sensitivity with tapering parameter α giving an extremum point at α=0.5. Overall analysis indicates a potential application of the nonuniform beams with quartic converging width for biomass sensor.

References

References
1.
Ekinci
,
K. L.
,
Yang
,
Y. T.
, and
Roukes
,
M. L.
,
2004
, “
Ultimate Limits to Inertial Mass Sensing Based Upon Nanoelectromechanical Systems
,”
J. Appl. Phys.
,
95
(
5
), pp.
2682
2689
.
2.
Zalalutdinov
,
M.
,
Ilic
,
B.
,
Czaplewski
,
D.
,
Zehnder
,
A.
,
Craighead
,
H. G.
, and
Parpia
,
J. M.
,
2000
, “
Frequency-Tunable Micromechanical Oscillator
,”
Appl. Phys. Lett.
,
77
(
20
), pp.
3287
3289
.
3.
Pandey
,
A. K.
,
Venkatesh
,
K. P.
, and
Pratap
,
R.
,
2000
, “
Effect of Metal Coating and Residual Effect on the Resonant Frequency of MEMS Resonators
,”
Sadhana
,
34
(
4
), pp.
651
662
.
4.
Kambali
,
P. N.
,
Swain
,
G.
, and
Pandey
,
A. K.
,
2016
, “
Frequency Analysis of Linearly Coupled Modes of MEMS Arrays
,”
ASME J. Vib. Acoust.
,
138
(
2
), p.
021017
.
5.
Kambali
,
P. N.
, and
Pandey
,
A. K.
,
2015
, “
Nonlinear Response of a Microbeam Under Combined Direct and Fringing Field Excitation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051010
.
6.
Kim
,
I. K.
, and
Lee
,
S. I.
,
2013
, “
Theoretical Investigation of Nonlinear Resonances in a Carbon Nanotube Cantilever With a Tip-Mass Under Electrostatic Excitation
,”
J. Appl. Phys.
,
114
(
10
), p.
104303
.
7.
Kacem
,
N.
,
Arcamone
,
J.
,
Perez-Murano
,
F.
, and
Hentz
,
S.
,
2010
, “
Dynamic Range Enhancement of Nonlinear Nanomechanical Resonant Cantilevers for Highly Sensitive NEMS Gas/Mass Sensor Applications
,”
J. Micromech. Microeng.
,
20
(
4
), p.
045023
.
8.
Balachandran
,
B.
, and
Magrab
,
E.
,
2009
,
Vibrations
,
Cengage Learning
,
Toronto, ON, Canada
.
9.
Chaterjee
,
S.
, and
Pohit
,
G.
,
2009
, “
A Large Deflection Model for the Pull-In Analysis of Electrostatically Actuated Microcantilever Beams
,”
J. Sound Vib.
,
322
(
4–5
), pp.
969
986
.
10.
Anderson
,
T. J.
,
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1996
, “
Experimental Verification of the Importance of the Nonlinear Curvature in the Response of a Cantilever Beam
,”
ASME J. Vib. Acoust.
,
118
(
1
), pp.
21
27
.
11.
Anderson
,
T. J.
,
Balachandran
,
B.
, and
Nayfeh
,
A. H.
,
1994
, “
Nonlinear Resonances in a Flexible Cantilever Beam
,”
ASME J. Vib. Acoust.
,
116
(
4
), pp.
480
484
.
12.
Blevins
,
R. D.
, and
Plunkett
,
R.
,
1980
, “
Formulas for Natural Frequency and Mode Shape
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
461
462
.
13.
Mabie
,
H. H.
, and
Rogers
,
C. B.
,
1964
, “
Transverse Vibrations of Doubletapered Cantilever Beams With End Support and With End Mass
,”
J. Acoust. Soc. Am.
,
36
(
3
), pp.
463
469
.
14.
Mabie
,
H. H.
, and
Rogers
,
C. B.
,
1974
, “
Transverse Vibrations of Doubletapered Cantilever Beams With End Support and With End Mass
,”
J. Acoust. Soc. Am.
,
55
(
5
), pp.
986
991
.
15.
Lau
,
J. H.
,
1984
, “
Vibration Frequencies of Tapered Bars With End Mass
,”
ASME J. Appl. Mech.
,
51
(
1
), pp.
179
181
.
16.
Auciello
,
N. M.
, and
Nole
,
G.
,
1998
, “
Vibrations of a Cantilever Tapered Beam With Varying Section Properties and Carrying a Mass at the Free End
,”
J. Sound Vib.
,
214
(
1
), pp.
105
119
.
17.
Wang
,
H. C.
,
1967
, “
Generalized Hypergeometric Function Solutions on Transverse Vibration of a Class of Nonuniform Beams
,”
ASME J. Appl. Mech.
,
34
(
3
), pp.
702
708
.
18.
Williams
,
F. W.
, and
Banerjee
,
J. R.
,
1985
, “
Flexural Vibration of Axially Loaded Beams With Linear or Parabolic Taper
,”
J. Sound Vib.
,
99
(
1
), pp.
121
138
.
19.
Abrate
,
S.
,
1995
, “
Vibration of Non-Uniform Rods and Beams
,”
J. Sound Vib.
,
185
(
4
), pp.
703
716
.
20.
Wang
,
C. Y.
,
2013
, “
Vibration of a Tapered Cantilever of Constant Thickness and Linearly Tapered Width
,”
Arch. Appl. Mech.
,
83
(
1
), pp.
171
176
.
21.
Singh
,
S. S.
,
Pal
,
P.
, and
Pandey
,
A. K.
,
2015
, “
Pull-In Analysis of Non-Uniform Microcantilever Beams Under Large Deflection
,”
J. Appl. Phys.
,
118
(
20
), p.
204303
.
22.
Clark
,
R. L.
,
Burdisso
,
R. A.
, and
Fuller
,
C. R.
,
1993
, “
Design Approaches for Shaping Polyvinylidene Fluoride Sensors in Active Structural Acoustic Control (ASAC)
,”
J. Intell. Mater. Syst. Struct.
,
4
(
3
), pp.
354
365
.
You do not currently have access to this content.