The objective of this paper is twofold: first to illustrate that nonlinear modal interactions, namely, a two-to-one internal resonance energy pump, can be exploited to improve the steady-state bandwidth of vibratory energy harvesters; and, second, to investigate the influence of key system’s parameters on the steady-state bandwidth in the presence of the internal resonance. To achieve this objective, an L-shaped piezoelectric cantilevered harvester augmented with frequency tuning magnets is considered. The distance between the magnets is adjusted such that the second modal frequency of the structure is nearly twice its first modal frequency. This facilitates a nonlinear energy exchange between these two commensurate modes resulting in large-amplitude responses over a wider range of frequencies. The harvester is then subjected to a harmonic excitation with a frequency close to the first modal frequency, and the voltage–frequency response curves are generated. Results clearly illustrate an improved bandwidth and output voltage over a case which does not involve an internal resonance. A nonlinear model of the harvester is developed and validated against experimental findings. An approximate analytical solution of the model is obtained using perturbation methods and utilized to draw several conclusions regarding the influence of key design parameters on the harvester’s bandwidth.

References

References
1.
Roundy
,
S.
, and
Wright
,
P.
,
2004
, “
A Piezoelectric Vibration Based Generator for Wireless Electronics
,”
Smart Mater. Struct.
,
13
(
5
), pp.
1131
1142
.
2.
Roundy
,
S.
,
2005
, “
On the Effectiveness of Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
809
823
.
3.
Challa
,
V.
,
Prasad
,
M.
,
Shi
,
Y.
, and
Fisher
,
F.
,
2008
, “
A Vibration Energy Harvesting Device With Bidirectional Resonance Frequency Tunability
,”
Smart Mater. Struct.
,
75
(1), p.
015035
.
4.
Shahruz
,
S. M.
,
2006
, “
Design of Mechanical Band-Pass Filters for Energy Scavenging
,”
J. Sound Vib.
,
292
(9), pp.
987
998
.
5.
Harne
,
R.
, and
Wang
,
K. C.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
24
(2), p.
023001
.
6.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.
7.
Sebald
,
G.
,
Kuwano
,
H.
,
Guyomar
,
D.
, and
Ducharne
,
B.
,
2011
, “
Experimental Duffing Oscillator for Broadband Piezoelectric Energy Harvesting
,”
Smart Mater. Struct.
,
20
(
10
), p.
102001
.
8.
Green
,
P. L.
,
Worden
,
K.
,
Atalla
,
K.
, and
Sims
,
N. D.
,
2012
, “
The Benefits of Duffing-Type Nonlinearities and Electrical Optimization of a Mono-Stable Energy Harvester Under White Gaussian Excitations
,”
J. Sound Vib.
,
331
(20), p.
45044517
.
9.
Daqaq
,
M. F.
,
2012
, “
On Intentional Introduction of Stiffness Nonlinearities for Energy Harvesting Under White Gaussian Excitations
,”
Nonlinear Dyn.
,
69
(3), p.
10631079
.
10.
Mann
,
B. P.
,
Barton
,
D. A. W.
, and
Owen
,
B.
,
2012
, “
Uncertainty in Performance for Linear and Nonlinear Energy Harvesting Strategies
,”
J. Intell. Mater. Syst. Struct.
,
23
(
13
), pp.
1451
1460
.
11.
Ali
,
S. F.
,
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Narayanan
,
S.
,
2011
, “
The Analysis of Piezomagnetoelastic Energy Harvesters Under Broadband Random Excitation
,”
J. Appl. Phys.
,
109
(
7
), p.
074904
.
12.
Geiyer
,
D.
, and
Kauffman
,
J. L.
,
2015
, “
Chaotification as a Means of Broadband Energy Harvesting With Piezoelectric Materials
,”
ASME J. Vib. Acoust.
,
137
(
5
), p.
051005
.
13.
Cao
,
J.
,
Zhou
,
S.
,
Inman
,
D. J.
, and
Lin
,
J.
,
2015
, “
Nonlinear Dynamic Characteristics of Variable Inclination Magnetically Coupled Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021015
.
14.
Nguyen
,
S. D.
,
Halvorsen
,
E.
, and
Paprotny
,
I.
,
2013
, “
Bistable Springs for Wideband Microelectromechanical Energy Harvesters
,”
Appl. Phys. Lett.
,
102
(
2
), p.
023904
.
15.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2009
, “
Reversible Hysteresis for Broadband Magnetopiezoelastic Energy Harvesting
,”
Appl. Phys. Lett.
,
95
(
17
), p.
174103
.
16.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
,
102
(
8
), p.
080601
.
17.
Zhou
,
S. X.
,
Cao
,
J. Y.
,
Lin
,
J.
, and
Wang
,
Z. Z.
,
2014
, “
Exploitation of a Tristable Nonlinear Oscillator for Improving Broadband Vibration Energy Harvesting
,”
Eur. Phys. J. Appl. Phys.
,
67
(
3
) p.
30902
.
18.
Erturk
,
A.
,
Renno
,
J. M.
, and
Inman
,
D. J.
,
2009
, “
Modeling of Piezoelectric Energy Harvesting From an L-Shaped Beam-Mass Structure With an Application
,”
J. Intell. Mater. Syst. Struct.
,
20
(5), pp.
529
544
.
19.
Nayfeh
,
A. H.
,
1998
,
Nonlinear Interactions: Analytical, Computational, and Experimental Methods
,
Wiley
,
New York
.
20.
El-Bassiouny
,
A. F.
,
2005
, “
Internal Resonance of a Nonlinear Vibration Absorber
,”
Phys. Scr.
,
72
(2–3), pp.
203
211
.
21.
Chen
,
L.-Q.
, and
Jiang
,
W.-A.
,
2015
, “
Internal Resonance Energy Harvesting
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031004
.
22.
Haddow
,
A. G.
,
Barr
,
A. D. S.
, and
Mook
,
D. T.
,
1984
, “
Theoretical and Experimental Study of Modal Interaction in a Two-Degree-of-Freedom Structure
,”
J. Sound Vib.
,
97
(
3
), pp.
451
473
.
23.
Balachandran
,
B.
, and
Nayfeh
,
A. H.
,
1990
, “
Nonlinear Motions of Beam-Mass Structures
,”
Nonlinear Dyn.
,
1
(
1
), pp.
39
61
.
24.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
25.
Timoshenko
,
S.
,
Young
,
D. H.
, and
Weaver
,
W.
,
1974
,
Vibration Problems in Engineering
,
Wiley
,
New York
.
You do not currently have access to this content.