Sloshing is one of the critical problems in aerospace vehicles with liquid containers. Motion of the liquid in resonance situations can degrade the stability and performance of attitude control systems. Two important characteristics of this time varying phenomenon are sensorless and underactuated properties which lead to difficulty of attitude control system design. In this paper, a new technique based on soft sensor and virtual actuator is used to suppress the effects of fuel sloshing in an aerospace launch vehicle (ALV). For this purpose, a nonlinear dynamic model of the vehicle with mechanical model of the fuel sloshing is considered as a multibody dynamic system. The preliminary attitude control system of the vehicle is extended using the new vibration suppression technique and a numerical simulation of the nonlinear model is carried out. Results of the simulation show that the undesired effects of the fuel sloshing are effectively decreased using the proposed vibration suppression technique.

References

References
1.
Thakar
,
P. S.
,
Bandyopadhyay
,
B.
,
Gandhi
,
P. S.
, and
Kurode
,
S.
,
2012
, “
Robust Control of Rotary Slosh Using Integral Sliding Modes
,”
12th IEEE Workshop on Variable Structure Systems
,
VSS'12
, Mumbai, India, Jan. 12–14, pp.
440
445
.
2.
Hervas
,
J. R.
, and
Reyhanoglu
,
M.
,
2012
, “
Control of a Spacecraft With Time-Varying Propellant Slosh Parameters
,”
12th International Conference on Control, Automation and Systems
, Jeju Island, Korea, Oct. 17–21, pp.
1621
1626
.
3.
Le-Mei
,
Z.
,
Bao-Zeng
,
Y.
,
Fang
,
X.
,
Qun-Feng
,
X.
, and
Xiao-Qiang
,
S.
,
2013
, “
Dynamic Inversion Control of Liquid-Filled Spacecraft Attitude and Fuel Sloshing Suppression
,”
32th Chinese Control Conference
, Xian, China, July 26–28, pp.
363
368
.
4.
Cho
,
S.
, and
McClamrocht
,
N. H.
,
2000
, “
Feedback Control of a Space Vehicle With Un-Actuated Fuel Slosh Dynamics
,”
AIAA
Paper No. 2000-4046.
5.
Kim
,
D.
, and
Choi
,
J. W.
,
2000
, “
Attitude Controller Design for a Launch Vehicle With Fuel-Slosh
,”
SICE
, Iizuka, Japan, July 26–28, pp.
235
240
.
6.
Khoshnood
,
A. M.
, and
Moradi
,
H.
,
2014
, “
Robust Adaptive Vibration Control of a Flexible Structure
,”
ISA Trans.
,
53
(
4
), pp.
1253
1260
.
7.
Pridgen
,
B.
,
Bai
,
K.
, and
Singhose
,
W.
,
2010
, “
Slosh Suppression by Robust Input Shaping
,”
49th IEEE Conference on Decision and Control
(
CDC
), Atlanta, GA, Dec. 15–17, pp.
2316
2321
.
8.
Reyhanoglu
,
M.
, and
Hervas
,
J. R.
,
2011
, “
Nonlinear Control of a Spacecraft With Multiple Fuel Slosh Modes
,”
50th IEEE Conference on Decision and Control and European Control Conference
(
CDC-ECC
), Orlando, FL, Dec. 12–15, pp.
6192
6197
.
9.
Yue
,
B. Z.
, and
Zhu
,
L. M.
,
2014
, “
Hybrid Control of Liquid-Filled Spacecraft Maneuvers by Dynamic Inversion and Input Shaping
,”
AIAA J.
,
52
, pp.
618
626
.
10.
Utsumi
,
M.
,
2013
, “
Mechanical Models of Low-Gravity Sloshing Taking Into Account Viscous Damping
,”
ASME J. Vib. Acoust.
,
136
(
1
), p.
011007
.
11.
Zelei
,
A.
,
Kovacs
,
L. L.
, and
Stepan
,
G.
,
2011
, “
Computed Torque Control of an Under-Actuated Service Robot Platform Modeled by Natural Coordinates
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
5
), pp.
2205
2217
.
12.
Krishnaswamy
,
K.
, and
Bugajski
,
D.
,
2005
, “
Inversion Based Multi Body Control—Launch Vehicle With Fuel Slosh
,”
AIAA
Paper No. 2005-6149.
13.
Zheng
,
E.
, and
Xiong
,
J.
,
2014
, “
Quad-Rotor Unmanned Helicopter Control Via Novel Robust Terminal Sliding Mode Controller and Under-Actuated System Sliding Mode Controller
,”
Opt. Int. J. Light Electron Opt.
,
125
(
12
), pp.
2817
2825
.
14.
Kim
,
M. S.
,
Oh
,
S. K.
,
Shin
,
J. H.
, and
Lee
,
J. J.
,
2001
, “
Robust Model Reference Adaptive Control of Under Actuated Robot Manipulators
,”
IEEE
International Symposium on Industrial Electronics
, Busan, Korea, June 12–16, pp.
1579
1584
.
15.
Lu
,
Y. S.
,
Chiu
,
H. H.
, and
Lien
,
S. F.
,
2013
, “
An Improved Back Stepping Design for the Control of an Under-Actuated Inverted Pendulum
,”
J. Mech. Sci. Technol.
,
27
(
3
), pp.
865
873
.
16.
Li
,
Z.
,
Yang
,
C.
,
Su
,
C.-Y.
, and
Ye
,
W.
,
2014
, “
Adaptive Fuzzy-Based Motion Generation and Control of Mobile Under-Actuated Manipulators
,”
J. Eng. Appl. Artif. Intell.
,
30
, pp.
86
95
.
17.
Li
,
J.
,
Guo
,
X.
,
Li
,
Z.
, and
Chen
,
W.
,
2014
, “
Stochastic Adaptive Optimal Control of Under-Actuated Robots Using Neural Networks
,”
J. Neurocomput.
,
142
, pp.
190
200
.
18.
Xie
,
L.
,
Zeng
,
J.
, and
Gao
,
C.
,
2014
, “
Novel Just-in-Time Learning-Based Soft Sensor Utilizing Non-Gaussian Information
,”
IEEE Trans. Control Syst. Technol.
,
22
(
1
), pp.
360
368
.
19.
Fortuna
,
L.
,
Grazian
,
S.
,
Rizzo
,
A.
, and
Xibilia
,
M. G.
,
2007
,
Soft Sensors for Monitoring and Control of Industrial Processes
,
Springer
,
Berlin
.
20.
Hervas
,
J. R.
, and
Reyhanoglu
,
M.
,
2010
, “
Thrust-Vector Control of a Three-Axis Stabilized Upper-Stage Rocket With Fuel Slosh Dynamics
,”
J. Acta Astronaut.
,
98
, pp.
120
127
.
21.
Jafari
,
A. A.
,
Khoshnood
,
A. M.
, and
Roshanian
,
J.
,
2010
, “
Nonlinear Dynamic Modeling and Active Vibration Control of a System With Fuel Sloshing
,”
World Acad. Sci., Eng. Technol.
,
61
, pp.
269
274
.
22.
Roshanian
,
J.
,
Saleh
,
A. R.
, and
Jahed-Motlagh
,
M. R.
,
2007
, “
On the Design of Adaptive Autopilots for a Launch Vehicle
,”
IMechE, Part I
,
221
, pp.
27
38
.
23.
Astrom
,
K. J.
, and
Wittenmark
,
B.
,
1989
,
Adaptive Control
,
2nd ed.
,
Addison-Wesley
,
Reading, MA
.
You do not currently have access to this content.