The response of a nonlinear oscillator is characterized by its instantaneous amplitude (IA) and instantaneous frequency (IF) features, which can be significantly affected by the physical properties of the system. Accordingly, the system properties could be inferred from the IA and IF of its response if both instantaneous features can be identified accurately. To fulfill such an idea, a nonlinear system parameter identification method is proposed in this paper with the aid of polynomial chirplet transform (PCT), which has been proved a powerful tool for processing nonstationary signals. First, the PCT is used to extract the instantaneous characteristics, i.e., IA and IF, from nonlinear system responses. Second, instantaneous modal parameters estimation was adopted to extract backbone and damping curves, which characterize the inherent nonlinearities of the system. Third, the physical property parameters of the system were estimated through fitting the identified average nonlinear characteristic curves. Finally, the proposed nonlinear identification method is experimentally validated through comparing with two Hilbert transform (HT) based methods.

References

References
1.
Von Karman
,
T.
,
1940
, “
The Engineer Grapples With Nonlinear Problem
,”
Bull. Am. Math. Soc.
,
46
(
8
), pp.
615
683
.
2.
Amabili
,
M.
, and
Paidoussis
,
M.
,
2003
, “
Review of Studies on Geometrically Nonlinear Vibrations and Dynamics of Circular Cylindrical Shells and Panels, With and Without Fluid-Structure Interaction
,”
ASME Appl. Mech. Rev.
,
56
(
4
), pp.
349
381
.
3.
Schmidt
,
G.
, and
Tondl
,
A.
,
1986
,
Non-Linear Vibration
,
Cambridge University Press
,
Cambridge, UK
.
4.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley-Interscience
,
New York
.
5.
Verhulst
,
F.
,
1999
,
Nonlinear Differential Equations and Dynamical Systems
, 2nd, ed.,
Springer
,
Berlin
.
6.
Nayfeh
,
A. H.
, and
Pai
,
P. F.
,
2004
,
Linear and Nonlinear Structural Mechanics
,
Wiley-Interscience
,
New York
.
7.
Babitsky
,
V. I.
, and
Krupenin
,
V. L.
,
2001
,
Vibrations of Strongly Nonlinear Discontinuous Systems
,
Springer
,
Berlin
.
8.
Worden
,
K.
, and
Tomlinson
,
G. R.
,
2002
,
Nonlinearity in Structural Dynamics: Detection, Identification and Modeling
,
CRC Press
,
Boca Raton, FL
.
9.
Doebling
,
S. W.
,
Farrar
,
C. R.
,
Prime
,
M. B.
, and
Shevitz
,
D. W.
,
1996
, “
Damage Identification and Health Monitoring of Structural and Mechanical Systems From Changes in Their Vibration Characteristics: A Literature Review
,” Los Alamos National Laboratory,
Report No. LA-13070-MS
.
10.
Cabrera
,
D.
,
Sancho
,
F.
,
Sanchez
,
R. V.
,
Zurita
,
G.
,
Cerrada
,
M.
,
Li
,
C.
, and
Vasquez
,
R. E.
,
2015
, “
Fault Diagnosis of Spur Gearbox Based on Random Forest and Wavelet Packet Decomposition
,”
Front. Mech. Eng.
,
10
(
3
), pp.
277
286
.
11.
Falco
,
M.
,
Liu
,
M.
,
Nguyen
,
S. H.
, and
Chelidze
,
D.
,
2014
, “
Nonlinear System Identification and Modeling of a New Fatigue Testing Rig Based on Inertial Forces
,”
ASME J. Vib. Acoust.
,
136
(
4
), p. 041001.
12.
Kerschen
,
G.
,
Worden
,
K.
, and
Vakakis
,
A. F.
,
2006
, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
20
(
3
), pp.
505
592
.
13.
Socha
,
L.
, and
Pawleta
,
M.
,
2001
, “
Are Statistical Linearization and Standard Equivalent Linearization the Same Methods in the Analysis of Stochastic Dynamic Systems?
,”
J. Sound Vib.
,
248
(
2
), pp.
387
394
.
14.
Iwan
,
W. D.
, and
Mason
,
A. B.
,
1980
, “
Equivalent Linearization for Systems Subjected to Non-Stationary Random Excitation
,”
Int. J. Non-Linear Mech.
,
15
(
2
), pp.
71
82
.
15.
Miles
,
H. J.
,
1995
, “
Identification of Weakly Non-Linear Systems Using Equivalent Linearization
,”
J. Sound Vib.
,
185
(
3
), pp.
473
481
.
16.
Soize
,
C.
,
1994
, “
Stochastic Linearization Method With Random Parameters and Power Spectral Density Calculation
,”
6th International Conference on Structural Safety and Reliability
, Innsbruck, Austria, Aug. 9–13, pp.
217
222
.
17.
Billings
,
S. A.
, and
Tsang
,
K. M.
,
1989
, “
Spectral Analysis for Nonlinear Systems, Part I: Parametric Non-Linear Spectral Analysis
,”
Mech. Syst. Signal Process.
,
3
(
4
), pp.
319
339
.
18.
Billings
,
S. A.
, and
Tsang
,
K. M.
,
1989
, “
Spectral Analysis for Nonlinear Systems, Part II: Interpretation of Nonlinear Frequency Response Functions
,”
Mech. Syst. Signal Process.
,
3
(
4
), pp.
341
359
.
19.
Storer
,
D. M.
, and
Tomlinson
,
G. R.
,
1993
, “
Recent Developments in the Measurements and Interpretation of Higher Order Functions From Non-Linear Structures
,”
Mech. Syst. Signal Process.
,
7
(
2
), pp.
173
189
.
20.
Schetzen
,
M.
,
1980
,
The Volterra and Wiener Theories of Nonlinear Systems
,
Wiley
,
New York
.
21.
Scussel
,
O.
, and
da Silva
,
S.
,
2016
, “
Output-Only Identification of Nonlinear System Via Volterra Series
,”
ASME J. Vib. Acoust.
,
138
(
4
), p.
041012
.
22.
Riche
,
R. L.
,
Gualandris
,
D.
,
Thomas
,
J. J.
, and
Hemez
,
F.
,
2001
, “
Neural Identification of Non-Linear Dynamic Structures
,”
J. Sound Vib.
,
248
(
2
), pp.
247
265
.
23.
Chassiakos
,
A. G.
, and
Masri
,
S. F.
,
1996
, “
Modelling Unknown Structural Systems Through the Use of Neural Networks
,”
Earthquake Eng. Struct. Dyn.
,
25
(
2
), pp.
117
128
.
24.
Cinar
,
A.
,
1995
, “
Nonlinear Time Series Models for Multivariable Dynamic Processes
,”
Chemom. Intell. Lab. Syst.
,
30
(
1
), pp.
147
158
.
25.
Zou
,
Y.
,
Tong
,
L.
, and
Steven
,
G. P.
,
2000
, “
Vibration-Based Model-Dependent Damage (Delamination) Identification and Health Monitoring for Composite Structures-a Review
,”
J. Sound Vib.
,
230
(
2
), pp.
357
378
.
26.
Kerschen
,
G.
,
Vakakis
,
A. F.
,
Lee
,
Y. S.
,
Mcfarland
,
D. M.
, and
Bergman
,
L. A.
,
2008
, “
Toward a Fundamental Understanding of the Hilbert–Huang Transform in Nonlinear Structural Dynamics
,”
J. Vib. Control
,
14
(
1–2
), pp.
77
105
.
27.
Sun
,
Y.
,
Zhuang
,
C.
, and
Xiong
,
Z.
,
2015
, “
Transform Operator Pair Assisted Hilbert-Huang Transform for Signals With Instantaneous Frequency Intersections
,”
ASME J. Vib. Acoust.
,
137
(
6
), p.
061016
.
28.
Feldman
,
M.
, and
Braun
,
S.
,
1995
, “
Identification of Non-Linear System Parameters Via the Instantaneous Frequency: Application of the Hilbert Transform and Wigner–Ville Technique
,”
13th International Modal Analysis Conference
, Nashville, TN, Feb. 13–16, pp.
637
642
.
29.
Franco
,
H.
, and
Pauletti
,
R. M. O.
,
1997
, “
Analysis of Nonlinear Oscillations by Gabor Spectrograms
,”
Nonlinear Dyn.
,
12
(
3
), pp.
215
236
.
30.
Bellizzi
,
S.
,
Guillemain
,
P.
, and
Kronland-Martinet
,
R.
,
2001
, “
Identification of Coupled Non-Linear Modes From Free Vibration Using Time–Frequency Representations
,”
J. Sound Vib.
,
243
(
2
), pp.
191
213
.
31.
Argoul
,
P.
, and
Le
,
T. P.
,
2003
, “
Instantaneous Indicators of Structural Behaviour Based on the Continuous Cauchy Wavelet Analysis
,”
Mech. Syst. Signal Process.
,
17
(
1
), pp.
243
250
.
32.
Staszewski
,
W. J.
,
1998
, “
Identification of Non-Linear Systems Using Multi-Scale Ridges and Skeletons of the Wavelet Transform
,”
J. Sound Vib.
,
214
(
4
), pp.
639
658
.
33.
Pailwal
,
D.
,
Choudhur
,
A.
, and
Govandhan
,
T.
,
2014
, “
Identification of Faults Through Wavelet Transform Vis-à-Vis Fast Fourier Transform of Noisy Vibration Signals Emanated From Defective Rolling Element Bearings
,”
Front. Mech. Eng.
,
9
(
2
), pp.
130
141
.
34.
Pai
,
P. F.
,
2013
, “
Time–Frequency Analysis for Parametric and Non-Parametric Identification of Nonlinear Dynamical Systems
,”
Mech. Syst. Signal Process.
,
36
(
2
), pp.
332
353
.
35.
Feldman
,
M.
,
1994
, “
Non-linear System Vibration Analysis Using Hilbert Transform—I. Free Vibration Analysis Method ‘FREEVIB’
,”
Mech. Syst. Signal Process.
,
8
(
2
), pp.
119
127
.
36.
Feldman
,
M.
,
1994
, “
Non-Linear System Vibration Analysis Using Hilbert Transform—II. Forced Vibration Analysis Method ‘FORCEVIB’
,”
Mech. Syst. Signal Process.
,
8
(
3
), pp.
309
318
.
37.
Feldman
,
M.
,
2007
, “
Considering High Harmonics for Identification of Non-Linear Systems by Hilbert Transform
,”
Mech. Syst. Signal Process.
,
21
(
2
), pp.
943
958
.
38.
Feldman
,
M.
,
2006
, “
Time-Varying Vibration Decomposition and Analysis Based on the Hilbert Transform
,”
J. Sound Vib.
,
295
(
3–5
), pp.
518
530
.
39.
Feldman
,
M.
,
1997
, “
Non-Linear Free Vibration Identification Via the Hilbert Transform
,”
J. Sound Vib.
,
208
(
3
), pp.
475
489
.
40.
Feldman
,
M.
,
2012
, “
Nonparametric Identification of Asymmetric Nonlinear Vibration Systems With the Hilbert Transform
,”
J. Sound Vib.
,
331
(
14
), pp.
3386
3396
.
41.
Peng
,
Z. K.
,
Meng
,
G.
, and
Chu
,
F. L.
,
2011
, “
Polynomial Chirplet Transform With Application to Instantaneous Frequency Estimation
,”
IEEE Trans. Instrum. Meas.
,
60
(
9
), pp.
3222
3229
.
42.
Yang
,
Y.
,
Zhang
,
W.
,
Peng
,
Z.
, and
Meng
,
G.
,
2013
, “
Multicomponent Signal Analysis Based on Polynomial Chirplet Transform
,”
IEEE Trans. Ind. Electron.
,
60
(
9
), pp.
3948
3956
.
43.
Wang
,
L. L.
,
Zhang
,
J. H.
,
Wang
,
C.
, and
Hu
,
S. Y.
,
2003
, “
Time–Frequency Analysis of Nonlinear Systems: The Skeleton Linear Model and the Skeleton Curves
,”
ASME J. Vib. Acoust.
,
125
(
2
), pp.
170
177
.
44.
Weaver
,
W.
,
Timoshenko
,
S. P.
, and
Young
,
D. H.
,
1990
,
Vibration Problems in Engineering
, 5th ed.,
Wiley
,
New York
.
45.
Feldman
,
M.
,
2011
,
Hilbert Transform Application in Mechanical Vibration
,
Wiley
,
Chichester, UK
.
46.
Deng
,
Y.
,
Peng
,
Z. K.
,
Yang
,
Y.
,
Zhang
,
W. M.
, and
Meng
,
G.
,
2013
, “
Identification of Nonlinear Vibration Systems Based on Parametric TFA
,”
Chin. J. Theor. Appl. Mech.
,
45
(
6
), pp.
992
996
(in Chinese).
47.
Boashash
,
B.
,
1992
, “
Estimating and Interpreting the Instantaneous Frequency of a Signal. I. Fundamentals
,”
Proc. IEEE
,
80
(
4
), pp.
520
538
.
48.
Boashash
,
B.
,
1992
, “
Estimating and Interpreting the Instantaneous Frequency of a Signal. II. Algorithms and applications
,”
Proc. IEEE
,
80
(
4
), pp.
540
568
.
49.
Kwok
,
H. K. C.
, and
Jones
,
D. L.
,
1995
, “
Instantaneous Frequency Estimation Using an Adaptive Short-Time Fourier Transform
,”
Twenty-Ninth Asilomar Conference on Signals, Systems and Computers
, Pacific Grove, CA, Oct. 30–Nov. 1, pp.
543
546
.
50.
Shui
,
P. L.
,
Bao
,
Z.
, and
Su
,
H. T.
,
2008
, “
Nonparametric Detection of FM Signals Using Time–Frequency Ridge Energy
,”
IEEE Trans. Signal Process.
,
56
(
5
), pp.
1749
1760
.
51.
Li
,
Y. Y.
,
Huang
,
X. Q.
, and
Mao
,
W. X.
,
2005
, “
Effect of the Cubic Nonlinear Factors for Displacement and Velocity on Amplitude Frequency Characteristics of Dry Friction System for Metal Rubber
,”
J. Mech. Strength
,
27
(
4
), pp.
436
439
(in Chinese).
52.
Ling
,
R. J.
,
Weng
,
J. S.
, and
Jin
,
Z. L.
,
2009
, “
Non-Linear Finite Element Analysis on Stiffness and Hysteresis Characteristic of Leaf Spring
,”
J. Chongqing Inst. Technol. (Nat. Sci)
,
23
(
1
), pp.
19
23
(in Chinese).
53.
Li
,
S. H.
, and
Yang
,
S. P.
,
2006
, “
Research Status of Hysteretic Nonlinear Models
,”
J. Dyn.
Control,
4
(
2
), pp.
8
15
(in Chinese).
You do not currently have access to this content.