Numerical and experimental investigations are carried out to study the combined effect of rotation and support nonuniformity on the modal characteristics of circular thick disks. The laboratory experiments on stationary and rotating circular disks are conducted to investigate the effects of partial support conditions on the in-plane and out-of-plane vibration responses of annular disks with different radius ratios. Numerical results suggested that the nonuniformity of the support along the circumferential directions of the boundaries affects the modal characteristics of the disk along the in-plane and out-of-plane directions, while introducing additional coupling between the modes. Specifically, some of the frequency peaks in the frequency spectrum obtained under uniform boundary conditions split into two distinct peaks in the presence of a point support. The results show that the in-plane modes of vibration are comparable with those associated with out-of-plane modes and are contributing to the total noise radiation. The coupling between in-plane and out-of-plane modes is found to be quite significant due to the nonuniformity of the boundary conditions. The experimental study confirms the split in natural frequencies of the disk that is observed in the numerical results due to both rotation and support nonuniformity. The applicability and accuracy of the formulations is further examined through analysis of modal characteristics of a railway wheel in contact with the rail.

References

References
1.
Thompson
,
D. J.
,
1993
, “
Wheel-Rail Noise Generation, Part II: Wheel Vibration
,”
J. Sound Vib.
,
161
(
3
), pp.
401
419
.
2.
Tzou
,
K. I.
,
Wickert
,
J. A.
, and
Akay
,
A.
,
1998
, “
In-Plane Vibration Modes of Arbitrarily Thick Disks
,”
ASME J. Vib. Acoust.
,
120
(
2
), pp.
384
391
.
3.
Hashemi
,
S. H.
,
Farhadi
,
S.
, and
Carra
,
S.
,
2009
, “
Free Vibration Analysis of Rotating Thick Plates
,”
J. Sound Vib.
,
323
(
1–2
), pp.
366
384
.
4.
Spelsberg-Korspeter
,
G.
,
Hochlenert
,
D.
,
Kirillov
,
O. N.
, and
Hagedorn
,
P.
,
2009
, “
In-and Out-of-Plane Vibrations of a Rotating Plate With Frictional Contact: Investigations on Squeal Phenomena
,”
ASME J. Appl. Mech.
,
76
(
4
), p.
041006
.
5.
Thompson
,
D. J.
, and
Jones
,
C. J. C.
,
2000
, “
A Review of the Modelling of Wheel/Rail Noise Generation
,”
J. Sound Vib.
,
231
(
3
), pp.
519
536
.
6.
Lee
,
H.
, and
Singh
,
R.
,
2005
, “
Self and Mutual Radiation From Flexural and Radial Modes of a Thick Annular Disk
,”
J. Sound Vib.
,
286
(
4
), pp.
1032
1040
.
7.
Lee
,
H.
,
2004
, “
Influence of In-Plane Modes of a Rotor to Brake Noise
,”
ASME
Paper No. IMECE2004-62324.
8.
Lee
,
H.
, and
Singh
,
R.
,
2004
, “
Determination of Sound Radiation From a Simplified Disk-Brake Rotor by a Semi-Analytical Method
,”
Noise Control Eng. J.
,
52
(
5
), pp.
225
239
.
9.
Hirano
,
Y.
, and
Okazaki
,
K.
,
1976
, “
Vibrations of a Circular Plate Having Partly Clamped or Partly Simply Supported Boundary
,”
Bull. JSME
,
19
(
132
), pp.
610
618
.
10.
Keer
,
L. M.
, and
Stahl
,
B.
,
1972
, “
Eigenvalue Problems of Rectangular Plates With Mixed Edge Conditions
,”
ASME J. Appl. Mech.
,
39
(
2
), pp.
513
520
.
11.
Irie
,
T.
, and
Yamada
,
G.
,
1978
, “
Free Vibration of Circular Plate Elastically Supported at Some Points
,”
Bull. JSME
,
21
(
161
), pp.
1602
1609
.
12.
Leissa
,
A. W.
,
Laura
,
P. A. A.
, and
Gutierrez
,
R. H.
,
1979
, “
Transverse Vibrations of Circular Plates Having Nonuniform Edge Constraints
,”
J. Acoust. Soc. Am.
,
66
(
1
), pp.
180
184
.
13.
Laura
,
P. A. A.
, and
Ficcadenti
,
G. M.
,
1980
, “
Transverse Vibrations of Circular Plates of Varying Thickness With Non-Uniform Edge Constraints
,”
Appl. Acoust.
,
13
(
3
), pp.
227
236
.
14.
Narita
,
Y.
, and
Leissa
,
A. W.
,
1980
, “
Transverse Vibration of Simply Supported Circular Plates Having Partial Elastic Constraints
,”
J. Sound Vib.
,
70
(
1
), pp.
103
116
.
15.
Amabili
,
M.
,
Pierandrei
,
R.
, and
Frosali
,
G.
,
1997
, “
Analysis of Vibrating Circular Plates Having Non-Uniform Constraints Using the Modal Properties of Free-Edge Plates: Application to Bolted Plates
,”
J. Sound Vib.
,
206
(
1
), pp.
23
38
.
16.
Hasheminejad
,
S. M.
,
Ghaheri
,
A.
, and
Rezaei
,
S.
,
2012
, “
Semi-Analytic Solutions for the Free In-Plane Vibrations of Confocal Annular Elliptic Plates With Elastically Restrained Edges
,”
J. Sound Vib.
,
331
(
2
), pp.
434
456
.
17.
Kim
,
C.-B.
,
Cho
,
H. S.
, and
Beom
,
H. G.
,
2012
, “
Exact Solutions of In-Plane Natural Vibration of a Circular Plate With Outer Edge Restrained Elastically
,”
J. Sound Vib.
,
331
(
9
), pp.
2173
2189
.
18.
Shi
,
X.
,
Shi
,
D.
,
Qin
,
Z.
,
Wang
,
Q.
,
Shi
,
X.
,
Shi
,
D.
,
Qin
,
Z.
, and
Wang
,
Q.
,
2014
, “
In-Plane Vibration Analysis of Annular Plates With Arbitrary Boundary Conditions, In-Plane Vibration Analysis of Annular Plates With Arbitrary Boundary Conditions
,”
Sci. World J.
,
2014
, p.
e653836
.
19.
Khare
,
S.
, and
Mittal
,
N. D.
,
2015
, “
Free Vibration Analysis of Thin Circular and Annular Plate With General Boundary Conditions
,”
Eng. Solid Mech.
,
3
(
4
), pp.
245
252
.
20.
Eastep
,
F. E.
, and
Hemmig
,
F. G.
,
1982
, “
Natural Frequencies of Circular Plates With Partially Free, Partially Clamped Edges
,”
J. Sound Vib.
,
84
(
3
), pp.
359
370
.
21.
Febbo
,
M.
,
Vera
,
S. A.
, and
Laura
,
P. A. A.
,
2005
, “
Free, Transverse Vibrations of Thin Plates With Discontinuous Boundary Conditions
,”
J. Sound Vib.
,
281
(
1
), pp.
341
356
.
22.
Narita
,
Y.
, and
Leissa
,
A. W.
,
1981
, “
Flexural Vibrations of Free Circular Plates Elastically Constrained Along Parts of the Edge
,”
Int. J. Solids Struct.
,
17
(
1
), pp.
83
92
.
23.
Boennen
,
D.
, and
Walsh
,
S. J.
,
2012
, “
A Cyclosymmetric Beam Model and a Spring-Supported Annular Plate Model for Automotive Disc Brake Vibration
,”
ISRN Mech. Eng.
,
2012
, p.
739384
.
24.
Jin
,
G.
,
Ye
,
T.
,
Shi
,
S.
,
Jin
,
G.
,
Ye
,
T.
, and
Shi
,
S.
,
2015
, “
Three-Dimensional Vibration Analysis of Isotropic and Orthotropic Open Shells and Plates With Arbitrary Boundary Conditions, Three-Dimensional Vibration Analysis of Isotropic and Orthotropic Open Shells and Plates With Arbitrary Boundary Conditions
,”
Shock Vib.
,
2015
, p.
e896204
.
25.
Burdess
,
J. S.
,
Wren
,
T.
, and
Fawcett
,
J. N.
,
1987
, “
Plane Stress Vibrations in Rotating Discs
,”
Proc. Inst. Mech. Eng., Part C
,
201
(
1
), pp.
37
44
.
26.
Chen
,
J.-S.
, and
Jhu
,
J.-L.
,
1996
, “
In-Plane Response of a Rotating Annular Disk Under Fixed Concentrated Edge Loads
,”
Int. J. Mech. Sci.
,
38
(
12
), pp.
1285
1293
.
27.
Chen
,
J.-S.
, and
Jhu
,
J.-L.
,
1996
, “
On the In-Plane Vibration and Stability of a Spinning Annular Disk
,”
J. Sound Vib.
,
195
(
4
), pp.
585
593
.
28.
Hamidzadeh
,
H. R.
,
2002
, “
In-Plane Free Vibration and Stability of Rotating Annular Discs
,”
Proc. Inst. Mech. Eng., Part K
,
216
(
4
), pp.
371
380
.
29.
Hamidzadeh
,
H. R.
, and
Sarfaraz
,
E.
,
2012
, “
Influence of Material Damping on In-Plane Modal Parameters for Rotating Disks
,”
ASME
Paper No. IMECE2012-86479.
30.
Deshpande
,
M.
, and
Mote
,
C. D.
, Jr
.,
2003
, “
In-Plane Vibrations of a Thin Rotating Disk
,”
ASME J. Vib. Acoust.
,
125
(
1
), pp.
68
72
.
31.
Dousti
,
S.
, and
Abbas Jalali
,
M.
,
2012
, “
In-Plane and Transverse Eigenmodes of High-Speed Rotating Composite Disks
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011019
.
32.
Norouzi
,
H.
, and
Younesian
,
D.
,
2014
, “
Forced Vibration Analysis of Spinning Disks Subjected to Transverse Loads
,”
Int. J. Struct. Stab. Dyn.
,
15
(03), p.
1450049
.
33.
Sato
,
S.
, and
Matsuhisa
,
H.
,
1978
, “
Study on the Mechanism of Train Noise and Its Countermeasure—1. Characteristics of Wheel Vibration
,”
JSME Bull.
,
21
(
160
), pp.
1475
1481
.
34.
Ambati
,
G.
,
Bell
,
J. F. W.
, and
Sharp
,
J. C. K.
,
1976
, “
In-Plane Vibrations of Annular Rings
,”
J. Sound Vib.
,
47
(
3
), pp.
415
432
.
35.
Lee
,
H.
,
2003
, “
Modal Acoustic Radiation Characteristics of a Thick Annular Disk
,” Ph.D. thesis, The Ohio State University, Columbus, OH.
36.
Bashmal
,
S.
,
Bhat
,
R.
, and
Rakheja
,
S.
,
2011
, “
In-Plane Free Vibration Analysis of an Annular Disk With Point Elastic Support
,”
Shock Vib.
,
18
(
4
), pp.
627
640
.
37.
Bashmal
,
S. M.
,
Bhat
,
R. B.
, and
Rakheja
,
S.
,
2009
, “
In-Plane Free Vibration of Circular Annular Rotating Disks
,”
38th International Congress and Exposition on Noise Control Engineering
(
INTER-NOISE
), Ottawa, Canada, Aug. 23–26, pp.
4404
4412
.
38.
So
,
J.
, and
Leissa
,
A. W.
,
1998
, “
Three-Dimensional Vibrations of Thick Circular and Annular Plates
,”
J. Sound Vib.
,
209
(
1
), pp.
15
41
.
39.
Bhat
,
R. B.
,
1985
, “
Natural Frequencies of Rectangular Plates Using Characteristic Orthogonal Polynomials in Rayleigh-Ritz Method
,”
J. Sound Vib.
,
102
(
4
), pp.
493
499
.
40.
Bashmal
,
S.
,
Bhat
,
R.
, and
Rakheja
,
S.
,
2010
, “
Analysis of In-Plane Modal Characteristics of an Annular Disk With Multiple Point Supports
,”
ASME
Paper No. IMECE2009-10033.
41.
Holland
,
R.
,
1966
, “
Numerical Studies of Elastic-Disk Contour Modes Lacking Axial Symmetry
,”
J. Acoust. Soc. Am.
,
40
(
5
), pp.
1051
1057
.
42.
Raman
,
A.
, and
Mote
,
C. D.
, Jr.
,
2001
, “
Experimental Studies on the Non-Linear Oscillations of Imperfect Circular Disks Spinning Near Critical Speed
,”
Int. J. Non-Linear Mech.
,
36
(
2
), pp.
291
305
.
You do not currently have access to this content.