An accurate singularity-free formulation of a three-dimensional curved Euler–Bernoulli beam with large deformations and large rotations is developed for flexible multibody dynamic analysis. Euler parameters are used to characterize orientations of cross sections of the beam, which can resolve the singularity problem caused by Euler angles. The position of the centroid line of the beam is integrated from its slope, and position vectors of nodes of beam elements are no longer used as generalized coordinates. Hence, the number of generalized coordinates for each node is minimized. Euler parameters instead of position vectors are interpolated in the current formulation, and a new C1-continuous interpolation function is developed, which can greatly reduce the number of elements. Governing equations of the beam and constraint equations are derived using Lagrange's equations for systems with constraints, which are solved by the generalized- $α$ method for resulting differential-algebraic equations (DAEs). The current formulation can be used to calculate static and dynamic problems of straight and curved Euler–Bernoulli beams under arbitrary, concentrated and distributed forces. The stiffness matrix and generalized force in the current formulation are much simpler than those in the geometrically exact beam formulation (GEBF) and absolute node coordinate formulation (ANCF), which makes it more suitable for static equilibrium problems. Numerical simulations show that the current formulation can achieve the same accuracy as the GEBF and ANCF with much fewer elements and generalized coordinates.

## References

1.
Rubin
,
B.
,
2000
,
Cosserat Theories: Shells, Rods and Points
,
Springer
,
Dordrecht, The Netherlands
.
2.
Antman
,
S. S.
,
1995
,
Nonlinear Problems in Elasticity
,
Springer-Verlag
,
New York.
3.
Bauchau
,
O. A.
,
2010
,
Flexible Multibody Dynamics
,
Springer
,
Dordrecht, The Netherlands
.
4.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge, UK
.
5.
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody Dynamics: A Finite Element Approach
,
Wiley
,
New York
.
6.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model—Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.
7.
Simo
,
J. C.
,
1985
, “
A Finite Strain Beam Formulation. The Three-Dimensional Dynamic Problem—Part I
,”
Comput. Methods Appl. Mech. Eng.
,
49
(
1
), pp.
55
70
.
8.
Ren
,
H.
,
2014
, “
A Computationally Efficient and Robust Geometrically-Exact Curved Beam Formulation for Multibody Systems
,” The 3rd Joint International Conference on Multibody System Dynamics and The 7th Asian Conference on Multibody Dynamics (
IMSD2014-ACMD2014
), Bushan, Korea, June 30–July 3, Paper No. 0228.
9.
Zupan
,
E.
,
Saje
,
M.
, and
Zupan
,
D.
,
2009
, “
The Quaternion-Based Three-Dimensional Beam Theory
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
49–52
), pp.
3944
3956
.
10.
Jelenić
,
G.
, and
Crisfield
,
M.
,
1999
, “
Geometrically Exact 3D Beam Theory: Implementation of a Strain-Invariant Finite Element for Statics and Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
171
(
1
), pp.
141
171
.
11.
Ibrahimbegović
,
A.
,
1995
, “
On Finite Element Implementation of Geometrically Nonlinear Reissner's Beam Theory: Three-Dimensional Curved Beam Elements
,”
Comput. Methods Appl. Mech. Eng.
,
122
(
1
), pp.
11
26
.
12.
,
M.
, and
Cardona
,
A.
,
1988
, “
Kinematics and Dynamics of Rigid and Flexible Mechanisms Using Finite Elements and Quaternion Algebra
,”
Comput. Mech.
,
4
(
2
), pp.
115
135
.
13.
Cardona
,
A.
, and
,
M.
,
1988
, “
A Beam Finite-Element Non-Linear Theory With Finite Rotations
,”
Int. J. Numer. Methods Eng.
,
26
(
11
), pp.
2403
2438
.
14.
Bauchau
,
O. A.
, and
Han
,
S. L.
,
2014
, “
Interpolation of Rotation and Motion
,”
Multibody Syst. Dyn.
,
31
(
3
), pp.
339
370
.
15.
Romero
,
I.
,
2004
, “
The Interpolation of Rotations and Its Application to Finite Element Models of Geometrically Exact Rods
,”
Comput. Mech.
,
34
(
2
), pp.
121
133
.
16.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
614
621
.
17.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
606
613
.
18.
Shabana
,
A. A.
,
1996
, “
An Absolute Nodal Coordinate Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies
,”
University of Illinois at Chicago
, Chicago,
IL, Technical Report No
. MBS96-1-UIC.
19.
Romero
,
I.
,
2008
, “
A Comparison of Finite Elements for Nonlinear Beams: The Absolute Nodal Coordinate and Geometrically Exact Formulations
,”
Multibody Syst. Dyn.
,
20
(
1
), pp.
51
68
.
20.
Shabana
,
A. A.
,
2011
,
Computational Continuum Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
21.
Gerstmayr
,
J.
, and
Irschik
,
H.
,
2008
, “
On the Correct Representation of Bending and Axial Deformation in the Absolute Nodal Coordinate Formulation With an Elastic Line Approach
,”
J. Sound Vib.
,
318
(
3
), pp.
461
487
.
22.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2003
, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
34
(
1–2
), pp.
53
74
.
23.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2007
, “
A Curved Beam Element in the Analysis of Flexible Multi-Body Systems Using the Absolute Nodal Coordinates
,”
Proc. Inst. Mech. Eng. Part K
,
221
(
2
), pp.
219
231
.
24.
Ren
,
H.
,
2015
, “
A Simple Absolute Nodal Coordinate Formulation for Thin Beams With Large Deformations and Large Rotations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061005
.
25.
Von Dombrowski
,
S.
,
2002
, “
Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates
,”
Multibody Syst. Dyn.
,
8
(
4
), pp.
409
432
.
26.
Zhao
,
Z. H.
, and
Ren
,
G. X.
,
2012
, “
A Quaternion-Based Formulation of Euler–Bernoulli Beam Without Singularity
,”
Nonlinear Dyn.
,
67
(
3
), pp.
1825
1835
.
27.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031016
.
28.
Bauchau
,
O. A.
,
Han
,
S. L.
,
Mikkola
,
A.
, and
Matikainen
,
M. K.
,
2014
, “
Comparison of the Absolute Nodal Coordinate and Geometrically Exact Formulations for Beams
,”
Multibody Syst. Dyn.
,
32
(
1
), pp.
67
85
.
29.
Zhu
,
W. D.
,
Ren
,
H.
, and
Xiao
,
C.
,
2011
, “
A Nonlinear Model of a Slack Cable With Bending Stiffness and Moving Ends With Application to Elevator Traveling and Compensation Cables
,”
ASME J. Appl. Mech.
,
78
(
4
), p.
041017
.
30.
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2014
, “
Nonlinear Dynamics of a High-Dimensional Model of a Rotating Euler–Bernoulli Beam Under the Gravity Load
,”
ASME J. Appl. Mech.
,
81
(
10
), p.
101007
.
31.
Li
,
L.
,
Zhu
,
W. D.
,
Zhang
,
D. G.
, and
Du
,
C. F.
,
2015
, “
A New Dynamic Model of a Planar Rotating Hub-Beam System Based on a Description Using the Slope Angle and Stretch Strain of the Beam
,”
J. Sound Vib.
,
345
, pp.
214
232
.
32.
Fan
,
W.
,
Zhu
,
W. D.
, and
Ren
,
H.
,
2016
, “
A New Singularity-Free Formulation of a Three-Dimensional Euler–Bernoulli Beam Using Euler Parameters
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041013
.
33.
Timoshenko
,
S. P.
, and
Goodier
,
J.
,
1970
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
34.
Arnold
,
M.
, and
Brüls
,
O.
,
2007
, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.
35.
Chung
,
J.
, and
Hulbert
,
G.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.
36.
Gerstmayr
,
J.
, and
Shabana
,
A.
,
2005
, “
Efficient Integration of the Elastic Forces and Thin Three-Dimensional Beam Elements in the Absolute Nodal Coordinate Formulation
,”
Multibody Dynamics of ECCOMAS Thematic Conference
, Madrid, Spain, June 21–24.
37.
Kelley
,
C. T.
,
2003
,
Solving Nonlinear Equations With Newton's Method
,
SIAM
,
.
38.
Bathe
,
K. J.
, and
Bolourchi
,
S.
,
1979
, “
Large Displacement Analysis of Three-Dimensional Beam Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
7
), pp.
961
986
.
39.
Shigley
,
J. E.
,
Budynas
,
R. G.
, and
Mischke
,
C. R.
,
2004
,
Mechanical Engineering Design
,
McGraw-Hill
,
New York
.
40.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Co-Ordinate Formulation
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
109
130
.
41.
Kramer
,
E.
,
1993
,
Dynamics of Rotors and Foundations
,
Springer-Verlag
,
London
.
You do not currently have access to this content.