The two-dimensional Helmholtz equation with zero normal derivatives on the boundary is studied using boundary collocation. The frequencies and modes are found for the isosceles triangular and rhombic domains. The solutions are important in predicting the standing waves in containers and also the transverse electric (TE) waves of electromagnetic, optical, and acoustic wave guides.

References

References
1.
Rayleigh
,
J. W. S.
,
1945
, “
Vibration of Membranes
,”
The Theory of Sound
,
2nd ed.
, Vol.
1
,
Dover
,
New York
, Chap. 9.
2.
Weaver
,
W.
,
Timoshenko
,
S. P.
, and
Young
,
G. H.
,
1990
, “
Continua With Infinite Degrees of Freedom
,”
Vibration Problems in Engineering
,
5th ed.
,
Wiley
,
New York
, Chap. 5.
3.
Wang
,
C. Y.
, and
Wang
,
C. M.
,
2014
, “
Vibration of Membranes
,”
Structural Vibration
,
CRC Press
,
Boca Raton, FL
, Chap. 3.
4.
Harrington
,
R. F.
,
2001
, “
Plane Wave Functions
,”
Time-Harmonic Electromagnetic Fields
,
Wiley
,
New York
, Chap. 4.
5.
Lamb
,
H.
,
1945
, “
Tidal Waves
,”
Hydrodynamics
,
Dover
,
New York
, Chap. 8.
6.
Morse
,
P. M.
, and
Feshbach
,
H.
,
1953
, “
Ordinary Differential Equations
,”
Methods of Theoretical Physics
,
McGraw-Hill
,
New York
, Chap. 5.
7.
Kostin
,
G. V.
, and
Saurin
,
V. V.
,
2001
, “
Analysis of Triangle Membrane Vibration by FEM and Ritz Method With Smooth Piecewise Polynomial Basis Functions
,”
Z. Angew. Math. Mech.
,
81
, pp.
S873
S874
.
8.
Bauer
,
L.
, and
Reiss
,
E. L.
,
1973
, “
Free Vibrations of Rhombic Plates and Membranes
,”
J. Acoust. Soc. Am.
,
54
(
5
), pp.
1373
1375
.
9.
Chaudhari
,
P. R.
, and
Patil
,
P. B.
,
1991
, “
Propagation in Twisted Triangular Waveguides
,”
Indian J. Pure Appl. Phys.
,
29
(
8
), pp.
566
568
.
10.
Sharma
,
A. K.
, and
Bhat
,
B.
,
1982
, “
Analysis of Triangular Microstrip Resonators
,”
IEEE Trans. Microwave Theory Tech.
,
30
(
11
), pp.
2029
2031
.
11.
Ivanov
,
M. I.
,
2004
, “
Free Tides in Two-Dimensional Uniform Depth Basins
,”
Fluid Dyn.
,
39
(
5
) pp.
779
789
.
12.
Helszajn
,
J.
, and
James
,
D. S.
,
1978
, “
Planar Triangular Resonators With Magnetic Walls
,”
IEEE Trans. Microwave Theory Tech.
,
26
(
2
), pp.
95
100
.
13.
Overfelt
,
P. L.
, and
White
,
D. J.
,
1986
, “
TE and TM Modes of Some Triangular Cross Section Waveguides Using Superposition of Plane Waves
,”
IEEE Trans. Microwave Theory Tech.
,
34
(
1
), pp.
161
167
.
14.
Collin
,
R. E.
,
1991
, “
Basic Electromagnetic Theory
,”
Field Theory of Guided Waves
,
2nd ed.
,
IEEE Press
,
New York
, Chap. 1.
15.
Lamb
,
H.
,
1879
, “
Waves in Liquids
,”
A Treatise on the Mathematical Theory of the Motion of Fluids
,
Cambridge University Press
,
Cambridge, UK
, Chap. 7.
16.
Kolodziej
,
J. A.
,
1987
, “
Review of Application of Boundary Collocation Methods in Mechanics of Continuous Media
,”
Solid Mech. Arch.
,
12
(
4
), pp.
187
231
.
17.
Schelkunoff
,
S. A.
,
1943
, “
Waves, Wave Guides and Resonators
,”
Electromagnetic Waves
,
Van Nostrand
,
New York
, Chap. 10.
18.
Wang
,
C. Y.
,
2010
, “
Exact Solution of Equilateral Triangular Waveguide
,”
Electron. Lett.
,
46
(
13
), pp.
925
930
.
19.
Olver
,
F. W. J.
,
1972
, “
Bessel Functions of Integer Order
,”
Handbook of Mathematical Functions
,
M.
Abramowitz
and
I. A.
Stegun
, eds.,
Dover
,
New York
, Chap. 9.
You do not currently have access to this content.