This paper investigates the application of semi-active inerter in semi-active suspension. A semi-active inerter is defined as an inerter whose inertance can be adjusted within a finite bandwidth by online control actions. A force-tracking approach to designing semi-active suspension with a semi-active inerter and a semi-active damper is proposed in this paper. Two parts are required in the force-tracking strategy: a target active control law and a proper algorithm to adjust the inertance and the damping coefficient online to track the target active control law. The target active control law is derived based on the state-derivative feedback control methodology in the “reciprocal state-space” (RSS) framework, which has the advantage that it is straightforward to use the acceleration information in the controller design. The algorithm to adjust the inertance and the damping coefficient is to saturate the active control force between the maximal and the minimal achievable suspension forces of the semi-active suspension. Both a quarter-car model and a full-car model are considered in this paper. Simulation results demonstrate that the semi-active suspension with a semi-active inerter and a semi-active damper can track the target active control force much better than the conventional semi-active suspension (which only contains a semi-active damper) does. As a consequence, the overall performance in ride comfort, suspension deflection, and road holding is improved, which effectively demonstrates the necessity and the benefit of introducing semi-active inerter in vehicle suspension.

References

References
1.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1648
1662
.
2.
Du
,
H.
, and
Zhang
,
N.
,
2009
, “
Fuzzy Control for Nonlinear Uncertain Electrohydraulic Active Suspensions With Input Constraint
,”
IEEE Trans. Fuzzy Syst.
,
17
(
2
), pp.
343
356
.
3.
Hu
,
Y.
,
Chen
,
M. Z. Q.
, and
Hou
,
Z.
,
2015
, “
Multiplexed Model Predictive Control for Active Vehicle Suspensions
,”
Int. J. Control
,
88
(
2
), pp.
347
363
.
4.
Türkay
,
S.
, and
Akçay
,
H.
,
2010
, “
Tire Damping Effect on H2 Optimal Control of Half-Car Active Suspensions
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
024502
.
5.
Du
,
H.
,
Sze
,
K. Y.
, and
Lam
,
J.
,
2005
, “
Semi-Active H∞ Control of Vehicle Suspension With Magneto-Rheological Dampers
,”
J. Sound Vib.
,
283
(
3–5
), pp.
981
996
.
6.
Savaresi
,
S. M.
,
Poussot-Vassal
,
C.
,
Spelta
,
C.
,
Sename
,
O.
, and
Dugard
,
L.
,
2010
,
Semi-Active Suspension Control Design for Vehicles
,
Elsevier/Butterworth Heinemann
,
Burlington, MA
.
7.
Hać
,
A.
, and
Youn
,
I.
,
1993
, “
Optimal Design of Active and Semi-Active Suspensions Including Time Delays and Preview
,”
ASME J. Vib. Acoust.
,
115
(
4
), pp.
498
508
.
8.
Song
,
X.
,
Ahmadian
,
M.
,
Southward
,
S.
, and
Miller
,
L. R.
,
2005
, “
An Adaptive Semiactive Control Algorithm for Magnetorheological Suspension Systems
,”
ASME J. Vib. Acoust.
,
127
(
5
), pp.
493
502
.
9.
Chen
,
M. Z. Q.
,
Papageorgiou
,
C.
,
Scheibe
,
F.
,
Wang
,
F.-C.
, and
Smith
,
M. C.
,
2009
, “
The Missing Mechanical Circuit Element
,”
IEEE Circuits Syst. Mag.
,
9
(
1
), pp.
10
26
.
10.
Smith
,
M. C.
, and
Wang
,
F.-C.
,
2004
, “
Performance Benefits in Passive Vehicle Suspensions Employing Inerters
,”
Veh. Syst. Dyn.
,
42
(
4
), pp.
235
257
.
11.
Wang
,
F.-C.
, and
Chan
,
H. A.
,
2011
, “
Vehicle Suspensions With a Mechatronic Network Strut
,”
Veh. Syst. Dyn.
,
49
(
5
), pp.
811
830
.
12.
Hu
,
Y.
,
Chen
,
M. Z. Q.
, and
Shu
,
Z.
,
2014
, “
Passive Vehicle Suspensions Employing Inerters With Multiple Performance Requirements
,”
J. Sound Vib.
,
333
(
8
), pp.
2212
2225
.
13.
Li
,
C.
,
Liang
,
M.
,
Wang
,
Y.
, and
Dong
,
Y.
,
2012
, “
Vibration Suppression Using Two-Terminal Flywheel. Part II: Application to Vehicle Passive Suspension
,”
J. Vib. Control
,
18
(
9
), pp.
1353
1365
.
14.
Nie
,
J.
,
Zhang
,
X.
, and
Chen
,
L.
,
2010
, “
Suspension Employing Inerter and Optimization Based on Vibration Isolation Theory on Electrical-Mechanical Analogies
,”
International Conference on Optoelectronics and Image Processing
(
ICOIP
), Haiko, China, Nov. 11–12, Vol.
2
, pp.
481
484
.
15.
Evangelou
,
E.
,
Limebeer
,
D. J. N.
,
Sharp
,
R. S.
, and
Smith
,
M. C.
,
2004
, “
Control of Motorcycle Steering Instabilities
,”
IEEE Control Syst. Mag.
,
26
(
5
), pp.
78
88
.
16.
Wang
,
F.-C.
,
Hong
,
M. F.
, and
Chen
,
C. W.
,
2010
, “
Building Suspensions With Inerters
,”
Proc. IMechE, Part C
,
224
(
8
), pp.
1605
1616
.
17.
Liu
,
Y.
,
Chen
,
M. Z. Q.
, and
Tian
,
Y.
,
2015
, “
Nonlinearities in Landing Gear Model Incorporating Inerter
,” 2015
IEEE
International Conference on Information and Automation
, Lijiang, China, Aug. 8–10, pp.
696
701
.
18.
Dong
,
X.
,
Liu
,
Y.
, and
Chen
,
M. Z. Q.
,
2015
, “
Application of Inerter to Aircraft Landing Gear Suspension
,”
34th Chinese Control Conference
, Hangzhou, China, July 28–30, pp.
2066
2071
.
19.
Wang
,
F.-C.
, and
Liao
,
M. K.
,
2010
, “
The Lateral Stability of Train Suspension Systems Employing Inerters
,”
Veh. Syst. Dyn.
,
48
(
5
), pp.
619
643
.
20.
Jiang
,
J. Z.
,
Zolotas
,
A.
,
Matamoros-Sanchez
,
A. Z.
,
Goodall
,
R. M.
, and
Smith
,
M. C.
,
2015
, “
Passive Suspensions for Ride Quality Improvement of Two-Axle Railway Vehicles
,”
J. Rail Rapid Transit
,
229
(
3
), pp.
315
329
.
21.
Jiang
,
J. Z.
,
Matamoros-Sanchez
,
A. Z.
,
Goodall
,
R. M.
, and
Smith
,
M. C.
,
2012
, “
Passive Suspensions Incorporating Inerters for Railway Vehicles
,”
Veh. Syst. Dyn.: Int. J. Veh. Mech. Mobility
,
50
(
Suppl 1
), pp.
263
276
.
22.
Chen
,
M. Z. Q.
,
Hu
,
Y.
,
Li
,
C.
, and
Chen
,
G.
,
2015
, “
Performance Benefits of Using Inerter in Semiactive Suspensions
,”
IEEE Trans. Control Syst. Technol.
,
23
(
4
), pp.
1571
1577
.
23.
Soong
,
M. F.
,
Ramli
,
R.
, and
Mahadi
,
W. N. L. W.
,
2014
, “
Vehicle Suspensions With Parallel Inerter: Effectiveness in Improving Vibration Isolation
,”
J. Vibroeng.
,
16
(
1
), pp.
256
265
.
24.
Zhang
,
X. J.
,
Ahmadian
,
M.
, and
Guo
,
K. H.
,
2012
, “
On the Benefits of Semi-Active Suspensions With Inerters
,”
Shock Vib.
,
19
(
3
), pp.
257
272
.
25.
Chen
,
M. Z. Q.
,
Hu
,
Y.
,
Li
,
C.
, and
Chen
,
G.
,
2014
, “
Semi-Active Suspension With Semi-Active Inerter and Semi-Active Damper
,” 19th
IFAC
World Congress
, Cape Town, South Africa, Aug. 24–29, pp.
11225
11230
.
26.
Wang
,
F.-C.
,
Hong
,
M. F.
, and
Lin
,
T. C.
,
2011
, “
Designing and Testing a Hydraulic Inerter
,”
Proc. Inst. Mech. Eng.
, Part C,
225
(
1
), pp.
66
72
.
27.
Wang
,
F.-C.
, and
Lin
,
T. C.
,
2008
, “
Hydraulic Inerter Mechanism
,”
U.S. Patent Application 12/048,652
.
28.
Li
,
C.
, and
Liang
,
M.
,
2012
, “
Characterization and Modeling of a Novel Electro-Hydraulic Variable Two-Terminal Mass Device
,”
Smart Mater. Struct.
,
21
(
2
), p.
025004
.
29.
Tuluie
,
R.
,
2010
, “
Fluid Inerter
,” U.S. Patent Application 13/575,017.
30.
Schumacher
,
L. L.
,
1991
, “
Controllable Inertia Flywheel
,”
U.S. Patent Application 4,995,282
.
31.
Chen
,
M. Z. Q.
, and
Hu
,
Y.
,
2015
, “
Continuously-Controllable-Inertia Flywheel
,” Chinese Patent No. 201,520,132,904.
32.
Tseng
,
Y. W.
,
1997
, “
Control Design of Linear Dynamic Systems With Matrix Differential Equations for Aerospace Applications
,”
Ph.D. thesis
, Department of Aerospace Engineering, The Ohio State University, Columbus, OH.
33.
Kwak
,
S. K.
,
Washington
,
G.
, and
Yedavalli
,
R. K.
,
2002
, “
Acceleration-Based Vibration Control of Distributed Parameter Systems Using the Reciprocal State-Space Framework
,”
J. Sound Vib.
,
251
(
3
), pp.
543
557
.
34.
Chui
,
C. K.
, and
Chen
,
G.
,
1987
,
Kalman Filtering: With Real-Time Applications
,
1st ed.
,
Springer
,
Berlin
.
35.
Chui
,
C. K.
, and
Chen
,
G.
,
2009
,
Kalman Filtering: With Real-Time Applications
,
4th ed.
,
Springer
,
Berlin
.
36.
Tseng
,
H. E.
, and
Hedrick
,
J. K.
,
1994
, “
Semi-Active Control Laws—Optimal and Sub-Optimal
,”
Veh. Syst. Dyn.
,
23
(
1
), pp.
545
569
.
37.
ISO
,
1995
, “
Mechanical Vibration—Road Surface Profiles—Reporting of Measured Data
,”
International Organization for Standardization (ISO)
, Geneva, Switzerland, ISO No. 8608:1995-09-01.
38.
Tyan
,
F.
,
Hong
,
Y. F.
,
Tu
,
S. H.
, and
Jeng
,
W. S.
,
2009
, “
Generation of Random Road Profiles
,”
J. Adv. Eng.
,
4
(
2
), pp.
1373
1378
.
39.
Du
,
H.
, and
Zhang
,
N.
,
2007
, “ H∞
Control of Active Vehicle Suspensions With Actuator Time Delay
,”
J. Sound Vibration
,
301
(
1
), pp.
236
252
.
40.
Brezas
,
P.
, and
Smith
,
M. C.
,
2014
, “
Linear Quadratic Optimal and Risk-Sensitive Control for Vehicle Active Suspensions
,”
IEEE Trans. Control Syst. Technol.
,
22
(
2
), pp.
543
556
.
41.
Zuo
,
L.
, and
Nayfeh
,
S. A.
,
2003
, “
Structured H2 Optimization of Vehicle Suspensions Based on Multi-Wheel Models
,”
Veh. Syst. Dyn.
,
40
(
5
), pp.
351
371
.
You do not currently have access to this content.