The ability of the structural intensity (STI) to predict changes in the sound radiation of structures due to geometric modifications is investigated using the academic example of plate-rib models. All models consist of the same plate and are modified by attaching a rib, whose position, orientation, and length are varied. Various scalar quantities are derived from the STI and quantitatively compared to the equivalent radiated sound power (ERP) for each model. Based on this comparison the relation between the STI-based scalars and the ERP is studied to determine an STI-based scalar that can serve as the objective function for numerical structural optimizations. The influence of the rib parameters on the most promising STI-based scalar is analyzed by means of a variance-based sensitivity analysis. The STI pattern of those models with very high and very low ERP values are additionally analyzed to describe the characteristics of STI. The results of this study indicate that the STI pattern of models with low ERP has paths and vortices that can be more clearly identified compared to those in models with high ERP. The angular orientation of the rib has by far the highest influence on changes in STI and ERP. The results reveal a correlation between the energy flow into a specific region of a structure, an STI-based scalar, and the ERP. Therefore, the vibrational energy flow can indeed serve as an objective function for numerical structural optimizations aiming at reducing the sound radiation.

References

References
1.
Marburg
,
S.
,
2002
, “
Developements in Structural-Acoustic Optimization for Passive Noise Control
,”
Arch. Comput. Methods Eng.
,
9
(
4
), pp.
291
370
.
2.
Bös
,
J.
,
2006
, “
Numerical Optimization of the Thickness Distribution of Three-Dimensional Structures With Respect to Their Structural Acoustic Properties
,”
Struct. Multidiscip. Optim.
,
32
(
1
), pp.
12
30
.
3.
Kollmann
,
F.
,
2000
,
Maschinenakustik: Grundlagen, Meßtechnik, Berechnung, Beeinflussung (Machine Acoustics: Fundamentals, Measuring Techniques, Calculation, and Influence)
,
2nd ed.
,
Springer
,
Berlin
.
4.
Kollmann
,
F.
,
Schösser
,
T.
, and
Angert
,
R.
,
2006
,
Praktische Maschinenakustik (Practical Machine Acoustics)
,
Springer
,
Berlin
.
5.
Noiseux
,
D.
,
1970
, “
Measurement of Power Flow in Uniform Beams and Plates
,”
J. Acoust. Soc. Am.
,
47
(
1p2
), pp.
238
247
.
6.
Hering
,
T.
,
2012
, “
Strukturintensitätsanalyse als Werkzeug der Maschinenakustik (Structural Intensity Analysis as a Tool for Engineering Noise Control)
,” Ph.D. thesis, TU Darmstadt, Darmstadt, Germany.
7.
Romano
,
A.
,
Abraham
,
P.
, and
Williams
,
E.
,
1990
, “
A Poynting Vector Formulation for Thin Shells and Plates, and Its Application to Structural Intensity Analysis and Source Localization. Part I: Theory
,”
J. Acoust. Soc. Am.
,
87
(
3
), pp.
1166
1176
.
8.
Gavrić
,
L.
, and
Pavić
,
G.
,
1993
, “
A Finite Element Method for Computation of Structural Intensity by the Normal Mode Approach
,”
J. Sound Vib.
,
164
(
1
), pp.
29
43
.
9.
McDevitt
,
T.
,
Koopmann
,
G.
, and
Burroughs
,
C.
,
1993
, “
Two-Channel Laser Vibrometer Techniques for Vibrational Intensity Measurements: Part 1—Flexural Intensity
,”
ASME J. Vib. Acoust.
,
115
(
4
), pp.
436
440
.
10.
McDevitt
,
T.
,
Koopmann
,
G.
, and
Burroughs
,
C.
,
1994
, “
Two-Channel Laser Vibrometer Techniques for Vibrational Intensity Measurements: Part 2—Longitudinal Intensity
,”
ASME J. Vib. Acoust.
,
116
(
1
), pp.
100
104
.
11.
Buckert
,
S.
,
2013
, “
Bewertung Adaptiver Strukturen auf Basis der Strukturintensität (Assessment of Adaptive Structures Based on Structural Intensity)
,” Ph.D. thesis, TU Darmstadt, Darmstadt, Germany.
12.
Hambric
,
S.
,
1990
, “
Power Flow and Mechanical Intensity Calculations in Structural Finite-Element Analysis
,”
J. Sound Vib.
,
112
(
4
), pp.
542
549
.
13.
Xu
,
X.
,
Lee
,
H.
, and
Lu
,
C.
,
2005
, “
Power Flow Paths in Stiffened Plates
,”
J. Sound Vib.
,
282
(
3–5
), pp.
1264
1272
.
14.
Zhang
,
Y.
, and
Mann
,
J.
,
1996
, “
Examples of Using Structural Intensity and the Force Distribution to Study Vibrating Plates
,”
J. Acoust. Soc. Am.
,
99
(
1
), pp.
354
361
.
15.
Li
,
Y.
, and
Lai
,
J.
,
2000
, “
Prediction of Surface Mobility of a Finite Plate With Uniform Force Excitation by Structural Intensity
,”
Appl. Acoust.
,
60
(
3
), pp.
371
383
.
16.
Lee
,
H.
,
Lim
,
S.
, and
Khun
,
M.
,
2006
, “
Diversion of Energy Flow Near Crack Tips of a Vibrating Plate Using the Structural Intensity Technique
,”
J. Sound Vib.
,
296
(
3
), pp.
602
622
.
17.
Tanaka
,
N.
,
Kikushima
,
Y.
,
Kuroda
,
M.
, and
Fergusson
,
N.
,
1997
, “
Active Control of a Distributed-Parameter Structure Using Vortex Power Flow Confinement
,”
J. Acoust. Soc. Am.
,
102
(
3
), pp.
1648
1656
.
18.
Tanaka
,
N.
, and
Hideaki
,
S.
,
2007
, “
Cluster Power Flow Control of a Distributed-Parameter Planar Structure for Generating a Vibration-Free Zone
,”
Smart Mater. Struct.
,
16
(
1
), pp.
47
56
.
19.
Zhu
,
X.
,
Li
,
T.
,
Zhao
,
Y.
, and
Liu
,
J.
,
2006
, “
Structural Power Flow Analysis of Timoshenko Beam With an Open Crack
,”
J. Sound Vib.
,
297
(
1–2
), pp.
215
226
.
20.
Zhu
,
X.
,
Li
,
T.
,
Zhao
,
Y.
, and
Yan
,
J.
,
2007
, “
Vibrational Power Flow Analysis of Thin Cylindrical Shell With a Circumferential Surface Crack
,”
J. Sound Vib.
,
302
(
1–2
), pp.
332
349
.
21.
Li
,
T.
,
Zhu
,
X.
,
Zhao
,
Y.
, and
Hu
,
X.
,
2009
, “
The Wave Propagation and Vibrational Energy Flow Characteristics of a Plate With a Part-Through Surface Crack
,”
Int. J. Eng. Sci.
,
47
(
10
), pp.
1025
1037
.
22.
Khun
,
M.
,
Lee
,
H.
, and
Lim
,
S.
,
2004
, “
Structural Intensity in Plates With Multiple Discrete and Distributed Spring-Dashpot Systems
,”
J. Sound Vib.
,
276
(
3–5
), pp.
627
648
.
23.
Pan
,
J.
, and
Hansen
,
C.
,
1991
, “
Active Control of Total Vibratory Power Flow in a Beam. I: Physical System Analysis
,”
J. Acoust. Soc. Am.
,
89
(
1
), pp.
200
209
.
24.
Schwenk
,
A.
,
Sommerfeldt
,
S.
, and
Hayek
,
S.
,
1994
, “
Adaptive Control of Structural Intensity Associated With Bending Waves in a Beam
,”
J. Acoust. Soc. Am.
,
96
(
5
), pp.
2826
2835
.
25.
Audrain
,
P.
,
Masson
,
P.
, and
Berry
,
A.
,
2000
, “
Investigation of Active Structural Intensity Control in Finite Beams: Theory and Experiment
,”
J. Acoust. Soc. Am.
,
108
(
2
), pp.
612
623
.
26.
Xin
,
F.
, and
Lu
,
T.
,
2010
, “
Analytical Modeling of Fluid Loaded Orthogonally Rib-Stiffened Sandwich Structures Sound Transmission
,”
J. Mech. Phys. Solids
,
58
(
9
), pp.
1375
1396
.
27.
Xin
,
F.
, and
Lu
,
T.
,
2012
, “
Sound Radiation of Parallelly Stiffened Plates Under Convected Harmonic Pressure Excitation
,”
Sci. China Technol. Sci.
,
55
(
2
), pp.
496
500
.
28.
Sharma
,
J.
,
2007
,
Business Statistics
,
2nd ed.
,
Pearson's Education
,
New Delhi, India
.
29.
Montgomery
,
D. C.
,
2009
,
Design and Analysis of Experiments
,
7th ed.
,
Wiley
,
Hoboken, NJ
.
30.
Hanselka
,
H.
, and
Bös
,
J.
,
2014
, “
Maschinenakustik (Machine Acoustics)
,”
Dubbel—Taschenbuch für den Maschinenbau (Dubbel—Handbook of Mechanical Engineering)
,
24th ed.
,
Springer
,
Berlin
.
31.
Ebert
,
J.
,
Stoewer
,
T.
,
Schaal
,
C.
,
Bös
,
J.
, and
Melz
,
T.
,
2014
, “
Efficient Simulation of the Active Vibratory Energy Flow of Structures in a Given Frequency Band
,” International Conference on Noise and Vibration Engineering (ISMA2014), Leuven, Belgium, Sept. 15–17, Paper No. 0347.
32.
Maysenhölder
,
W.
,
1994
,
Köperschallenergie—Grundlagen zur Berechnung von Energiedichten und Intensitäten (Structure-Borne Sound—Fundamentals of Calculating Energy Densities and Intensities)
,
S. Hirzel Verlag, Stuttgart/Leipzig
,
Germany
.
33.
Dassault Systèmes Simulia Corp.
,
2013
, “
Abaqus Analysis User's Guide
,” Release Abaqus 6.13, Dassault Systèmes, Waltham, MA.
34.
Zeller
,
P.
,
2009
,
Handbuch Fahrzeugakustik: Grundlagen, Auslegung, Berechnung, Versuch (Handbook Vehicle Acoustics: Fundamentals, Design, Calculation, Experiment)
,
Vieweg+Teubner Verlag
,
Wiesbaden, Germany
.
35.
Pavić
,
G.
,
1987
, “
Structural Surface Intensity: An Alternative Approach in Vibration Analysis and Diagnosis
,”
J. Sound Vib.
,
115
(
3
), pp.
405
422
.
You do not currently have access to this content.