Complex orthogonal decomposition (COD) is applied to an experimental beam to extract the dispersive wave properties from response measurements. The beam is made of steel and is rectangular with a constant cross section. One end of the beam is free and is hung by a soft elastic cord. An impulse is applied to the free-end. The other end is buried in sand to absorb the wave as it travels from the impact site on the free-end; this effectively prevents reflections of the wave off the buried end and emulates a semi-infinite beam. The beam response is measured with an array of accelerometers, whose signals are integrated to obtain an ensemble of displacement signals. Acceleration responses are also compared in the frequency domain to predictions from the Euler–Bernoulli model. COD is applied to the displacement ensemble to obtain complex modal vectors and associated complex modal coordinates (COCs). The spatial whirl rates of nearly harmonic modal vectors are used to extract the modal wave numbers, and the temporal whirl rates of the modal coordinates are used to estimate the modal frequencies. The dispersion relationship between the frequencies and wave numbers compare favorably to those of the theoretical infinite Euler–Bernoulli beam.

References

References
1.
Feeny
,
B. F.
,
2008
, “
A Complex Orthogonal Decomposition for Wave Motion Analysis
,”
J. Sound Vib.
,
310
(
1–2
), pp.
77
90
.
2.
Lumley
,
J.
,
1970
,
Stochastic Tools in Turbulence
,
Academic Press
,
New York
.
3.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Ann. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
4.
Cusumano
,
J. C.
, and
Bai
,
B.
,
1993
, “
Period-Infinity Periodic Motion, Chaos, and Spatial Coherence in a 10-Degree-of-Freedom Impact Oscillator
,”
Chaos, Solitons Fractals
,
3
(
5
), pp.
515
535
.
5.
FitzSimons
,
P.
, and
Rui
,
C.
,
1993
, “
Determining Low Dimensional Models of Distributed Systems
,”
Advances in Robust and Nonlinear Control Systems
, Vol.
DSC-53
, pp.
9
15
.
6.
Azeez
,
M. F. A.
, and
Vakakis
,
A. F.
,
2001
, “
Proper Orthogonal Decomposition (POD) of a Class of Vibroimpact Oscillations
,”
J. Sound Vib.
,
240
(
5
), pp.
859
889
.
7.
Lee
,
E.-T.
, and
Eun
,
H.-C.
,
2015
, “
Damage Identification Based on the Proper Orthogonal Mode Energy Curvature
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
041018
.
8.
Feeny
,
B. F.
, and
Kappagantu
,
R.
,
1998
, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
,
211
(
4
), pp.
607
616
.
9.
Riaz
,
M. S.
, and
Feeny
,
B. F.
,
2003
, “
Proper Orthogonal Decomposition of a Beam Sensed With Strain Gages
,”
ASME J. Vib. Acoust.
,
125
(
1
), pp.
129
131
.
10.
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2002
, “
Physical Interpretation of the Proper Orthogonal Modes Using the Singular Value Decomposition
,”
J. Sound Vib.
,
249
(
5
), pp.
849
865
.
11.
Feeny
,
B. F.
,
2002
, “
On Proper Orthogonal Coordinates as Indicators of Modal Activity
,”
J. Sound Vib.
,
255
(
5
), pp.
805
817
.
12.
Biglieri
,
E.
, and
Yao
,
K.
,
1989
, “
Some Properties of Singular Value Decomposition and Their Applications to Digital Signal Processing
,”
Signal Process.
,
18
(
3
), pp.
277
289
.
13.
Liu
,
W.
,
Gao
,
W.
, and
Sun
,
Y.
,
2009
, “
Application of Modal Identification Methods to Spatial Structure Using Field Measurement Data
,”
ASME J. Vib. Acoust.
,
131
(
3
), p.
034503
.
14.
Liang
,
Y. C.
,
Lee
,
H. P.
,
Lim
,
S. P.
,
Lin
,
W. Z.
,
Lee
,
K. H.
, and
Wu
,
C. G.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications—Part 1: Theory
,”
J. Sound Vib.
,
252
(
3
), pp.
527
544
.
15.
Yadalam
,
V. K.
, and
Feeny
,
B. F.
,
2011
, “
Reduced Mass Weighted Proper Decomposition for Modal Analysis
,”
ASME J. Vib. Acoust.
,
133
(
2
), p.
024504
.
16.
Caldwell
,
R. A.
, Jr.
, and
Feeny
,
B. F.
,
2014
, “
Output-Only Modal Identification of a Nonuniform Beam by Using Decomposition Methods
,”
ASME J. Vib. Acoust.
,
136
(
4
), p.
041010
.
17.
Ibrahim
,
S.
, and
Mikulcik
,
E.
,
1977
, “
A Method for the Direct Identification of Vibration Parameters From the Free Response
,”
Shock Vib. Bull.
,
47
(
4
), pp.
183
198
.
18.
Chelidze
,
D.
, and
Zhou
,
W.
,
2006
, “
Smooth Orthogonal Decomposition-Based Vibration Mode Identification
,”
J. Sound Vib.
,
292
(
3–5
), pp.
461
473
.
19.
Farooq
,
U.
, and
Feeny
,
B. F.
,
2008
, “
Smooth Orthogonal Decomposition for Modal Analysis of Randomly Excited Systems
,”
J. Sound Vib.
,
316
(
1–5
), pp.
137
146
.
20.
Farooq
,
U.
, and
Feeny
,
B. F.
,
2012
, “
An Experimental Investigation of a State-Variable Modal Decomposition Method for Modal Analysis
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021017
.
21.
Oppenheim
,
A. V.
, and
Schafer
,
R. W.
,
1989
,
Discrete-Time Signal Processing
,
Prentice Hall
,
Englewood Cliffs, NJ
.
22.
Schmidt
,
R. O.
,
1986
, “
Multiple Emitter Location and Signal Parameter Estimation
,”
IEEE Trans. Antennas Propag.
,
34
(
3
), pp.
276
280
.
23.
Roy
,
R.
, and
Kailath
,
T.
,
1989
, “
ESPRIT—Estimation of Signal Parameters Via Rotational Invariance Techniques
,”
IEEE Trans. Acoust., Speech Signal Process.
,
37
(
7
), pp.
984
995
.
24.
Feeny
,
B. F.
,
Sternberg
,
P. W.
,
Cronin
,
C. J.
, and
Coppola
,
C. A.
,
2013
, “
Complex Orthogonal Decomposition Applied to Nematode Posturing
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041010
.
25.
Feeny
,
B. F.
, and
Feeny
,
A. K.
,
2013
, “
Complex Modal Analysis of the Swimming Motion of a Whiting
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
021004
.
26.
Feeny
,
B. F.
,
2013
, “
Complex Modal Decomposition for Estimating Wave Properties in One-Dimensional Media
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031010
.
27.
Lee
,
H. S.
, and
Kwon
,
S. H.
,
2003
, “
Wave Profile Measurement by Wavelet Transform
,”
Ocean Eng.
,
30
(
18
), pp.
2313
2328
.
28.
McDaniel
,
J. G.
, and
Shepard
,
W. S.
,
2000
, “
Estimation of Structural Wave Numbers From Spatially Sparse Response Measurements
,”
J. Acoust. Soc. Am.
,
108
(
4
), pp.
1674
1682
.
29.
Grosh
,
K.
, and
Williams
,
E. G.
,
1993
, “
Complex Wavenumber Decomposition of Structural Vibration
,”
J. Acoust. Soc. Am.
,
93
(
2
), pp.
836
848
.
30.
Hull
,
A. J.
, and
Hurdis
,
D. A.
,
2003
, “
A Parameter Estimation Method for the Flexural Wave Properties of a Beam
,”
J. Sound Vib.
,
262
(
2
), pp.
187
197
.
31.
Manktelow
,
K. L.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Analysis and Experimental Estimation of Nonlinear Dispersion in a Periodic String
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031016
.
32.
Graff
,
K. F.
,
1975
,
Wave Motion in Elastic Solids
,
Courier Dover Publications
,
Columbus, OH
.
33.
Büssow
,
R.
,
2008
, “
Applications of the Flexural Impulse Response Functions in the Time Domain
,”
Acta Acust. Acust.
,
94
(
2
), pp.
207
214
.
34.
Önsay
,
T.
, and
Haddow
,
A. G.
,
1994
, “
Wavelet Transform Analysis of Transient Wave-Propagation in a Dispersive Medium
,”
J. Acoust. Soc. Am.
,
95
(
3
), pp.
1441
1449
.
35.
Beck
,
J.
, and
Arnold
,
K.
,
1977
,
Parameter Identification in Engineering and Science
,
Wiley
,
New York
.
This content is only available via PDF.
You do not currently have access to this content.