In this paper, a novel multipiece actuator configuration is first proposed. This configuration exhibits several advantages over the existing ones, such as: (1) the ability to overcome the deficiency of one-way actuation of PbLaZrTi (PLZT) actuators and (2) all of the actuators in this configuration being placed on the inner surfaces of a thin cylindrical shell and the removal of extra electrical wires between the end surfaces of the actuators. A new index of modal control factors is defined, and an optimization method for allocating actuator is proposed. By using the proposed method, the PLZT actuators can be located in an optimum position. Moreover, in view of the nonlinear and time-variant characteristics of photostrictive actuators, a self-organizing fuzzy sliding mode control (SOFSMC) method is established to attenuate multimodal vibration of photo-electric laminated thin cylindrical shells. A multilevel sliding mode surface is defined as fuzzy input and the SOFSMC method is used to infer the applied light intensity. Its control rule bank can be developed and adjusted continuously via online learning. In addition, using fuzzy sliding mode, the chatter inherent in conventional sliding mode control is therefore managed effectively while ensuring sliding mode behavior. Case studies demonstrate that the proposed approach can efficiently suppress multimodal vibration of photo-electric laminated thin cylindrical shells. It is also founded that SOFSMC can achieve better control effect than fuzzy neural network control (FNNC).

References

References
1.
Brody
,
P. S.
,
1983
, “
Optomechanical Bimorph Actuator
,”
Ferroelectrics
,
50
(
1–4
), pp.
353
358
.
2.
Fukuda
,
T.
,
Hattori
,
S.
,
Arai
,
F.
, and
Nakamura
,
H.
,
1995
, “
Performance Improvement of Optical Actuator by Double Side Irradiation
,”
IEEE Trans. Ind. Electron.
,
42
(
5
), pp.
455
461
.
3.
Poosanaas
,
P.
,
Tonooka
,
K.
, and
Uchino
,
K.
,
2000
, “
Photostrictive Actuators
,”
Mechatronic
,
10
(
4–5
), pp.
467
487
.
4.
Hu
,
S. D.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2015
, “
Precision Microscopic Actuations of Parabolic Cylindrical Shell Reflectors
,”
ASME J. Vib. Acoust.
,
137
(
1
), p.
011013
.
5.
Li
,
H. Y.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2015
, “
Frequency Control of Beams and Cylindrical Shells With Light-Activated Shape Memory Polymers
,”
ASME J. Vib. Acoust.
,
137
(
1
), p.
011006
.
6.
Tzou
,
H. S.
, and
Chou
,
C. S.
,
1996
, “
Nonlinear Opto-Electromechanics and Photodeformation of Optical Actuators
,”
Smart Mater. Struct.
,
5
(
2
), pp.
230
234
.
7.
Liu
,
B.
, and
Tzou
,
H. S.
,
1998
, “
Distributed Photostrictive Actuation and Opto-piezothermoelasticity Applied to Vibration Control of Plates
,”
ASME J. Vib. Acoust.
,
120
(
4
), pp.
937
943
.
8.
Tzou
,
H. S.
,
Liu
,
B.
, and
Cseledy
,
D.
,
2002
, “
Opto-Piezothermoelasticity Actions and Micro-Control Sensitivity Analysis of Cylindrical Opto-Mechanical Shell Actuators
,”
J. Theor. Appl. Mech.
,
40
(
3
), pp.
775
796
.
9.
Shih
,
H. R.
,
Tzou
,
H. S.
, and
McLin
,
K.
,
2003
, “
Optimal Control of Beam Dynamics With Segmented Photostrictive Actuators
,”
AIAA
Paper No. AIAA-2003-1648.
10.
Shih
,
H. R.
,
Tzou
,
H. S.
, and
Saypuri
,
M.
,
2005
, “
Structural Vibration Control Using Spatially Configured Opto-Electromechanical Actuator
,”
J. Sound Vib.
,
284
(
1–2
), pp.
361
378
.
11.
Rahman
,
M.
,
2005
, “
A Finite Element Approach to Model and Analyze Photostrictive Optical Actuators
,”
Ph.D. thesis
,
The University of Alabama
,
Tuscaloosa, AL
.
12.
Zheng
,
S. J.
,
2012
, “
Finite Element Simulation of Wireless Structural Vibration Control With Photostrictive Actuators
,”
Sci. China Technol. Sci.
,
55
(
3
), pp.
709
716
.
13.
Shih
,
H. R.
,
Smith
,
R.
, and
Tzou
,
H. S.
,
2004
, “
Photonic Control of Cylindrical Shells With Electro-Optic Photostrictive Actuators
,”
AIAA J.
,
42
(
2
), pp.
341
347
.
14.
Shih
,
H. R.
, and
Tzou
,
H. S.
,
2007
, “
Photostrictive Actuators for Photonic Control of Shallow Spherical Shells
,”
Smart Mater. Struct.
,
16
(
5
), pp.
1712
1717
.
15.
Shih
,
H. R.
,
Tzou
,
H. S.
, and
Walters
, Jr.,
W. L.
,
2009
, “
Photonic Control of Flexible Structures–Application to a Free-Floating Parabolic Membrane Shell
,”
Smart Mater. Struct.
,
18
(
11
), p.
115019
.
16.
Jiang
,
J.
,
Yue
,
H. H.
,
Deng
,
Z. Q.
, and
Tzou
,
H. S.
,
2012
, “
Cylindrical Shell Control With Center- and Corner-Placed Photostrictive Skew-Quad Actuator Systems
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
024503
.
17.
Morikawa
,
Y.
, and
Nakada
,
T.
,
1997
, “
Position Control of PLZT Bimorph-Type Optical Actuator by On-Off Control
,”
23rd International Conference on Industrial Electronics, Control and Instrumentation
, New Orleans, LA, Nov. 9–14, pp.
1403
1408
.
18.
Lei
,
L.
,
Wang
,
S. P.
, and
Cao
,
F.
,
2006
, “
Characteristics of Photo-Mechanical Device Using PLZT Wafer
,” Second
IEEE/ASME
International Conference on Mechatronic and Embedded Systems and Applications
,
Beijing, China
, Aug. 13–16, pp.
354
357
.
19.
Wang
,
X. J.
,
Yue
,
H. H.
,
Jiang
,
J.
,
Deng
,
Z. Q.
, and
Tzou
,
H. S.
,
2011
, “
Wireless Active Vibration Control of Thin Cylindrical Shells Laminated With Photostrictive Actuators
,”
J. Intell. Mater. Syst. Struct.
,
22
(
4
), pp.
337
351
.
20.
He
,
R. B.
,
Zheng
,
S. J.
, and
Wang
,
H. T.
,
2013
, “
Independent Modal Variable Structure Fuzzy Active Vibration Control of Cylindrical Thin Shells Laminated With Photostrictive Actuators
,”
Shock Vib.
,
20
(
4
), pp.
693
709
.
21.
Wang
,
X. J.
,
2011
, “
Research on Photostrictive Characteristics of PLZT and Active Control of Photostrictive Laminated Thin Shells of Revolution
,” Ph.D. thesis, Harbin Institute of Technology, China.
22.
Zheng
,
S. J.
,
Lian
,
J. J.
, and
Wang
,
H. T.
,
2014
, “
Genetic Algorithm Based Wireless Vibration Control of Multiple Modal for a Beam by Using Photostrictive Actuators
,”
Appl. Math. Modell.
,
38
(
2
), pp.
437
450
.
23.
He
,
R. B.
, and
Zheng
,
S. J.
,
2014
, “
Fuzzy Neural Network Multi-Modal Vibration Control of Thin Cylindrical Shells Laminated With Photostrictive Actuators
,”
Int. J. Appl. Electromagn. Mech.
,
46
(
4
), pp.
951
963
.
24.
Procyk
,
T. J.
, and
Mamdani
,
E. H.
,
1979
, “
A Linguistic Self-Organizing Process Controller
,”
Automatica
,
15
(
1
), pp.
15
30
.
25.
Shao
,
S.
,
1988
, “
Fuzzy Self-Organizing Controller and Its Application for Dynamic Process
,”
Fuzzy Sets Systems
,
26
(
2
), pp.
151
164
.
26.
Zhang
,
B. S.
, and
Edmunds
,
J. M.
,
1992
, “
Self-Organizing Fuzzy Logic Controller
,”
IEE Proc.-D
,
139
(
5
), pp.
460
464
.
27.
Yang
,
C. Z.
,
1992
, Design of Real-Time Linguistic Self-Organizing Fuzzy Controller, M.S. thesis, Department of Mechanical Engineering, National Taiwan University, Taiwan.
28.
Huang
,
S. J.
, and
Lee
,
J. S.
,
2000
, “
A Stable Self-organizing Fuzzy Controller for Robotic Motion Control
,”
IEEE Trans. Ind. Electron.
,
47
(
2
), pp.
421
428
.
29.
Huang
,
S. J.
, and
Lin
,
W. C.
,
2003
, “
A Self-Organizing Fuzzy Controller for an Active Suspension System
,”
J. Vib. Control
,
9
(
9
), pp.
1023
1040
.
30.
Lian
,
R. J.
,
Lin
,
B. F.
, and
Sie
,
W. T.
,
2005
, “
Self-Organizing Fuzzy Control of Active Suspension Systems
,”
Int. J. Syst. Sci.
,
36
(
3
), pp.
119
135
.
31.
Lian
,
R. J.
,
Lin
,
B. F.
, and
Huang
,
J. H.
,
2006
, “
Self-Organizing Fuzzy Control of Constant Cutting Force in Turning
,”
Int. J. Adv. Manuf. Technol.
,
29
(
5
), pp.
436
445
.
32.
Lin
,
J.
, and
Lian
,
R. J.
,
2010
, “
Self-Organizing Fuzzy Controller for Gas-Assisted Injection Molding Combination Systems
,”
IEEE Trans. Control Syst. Technol.
,
18
(
6
), pp.
1413
1421
.
33.
Lin
,
J.
, and
Lian
,
R. J.
,
2010
, “
Self-Organizing Fuzzy Controller for Injection Molding Machines
,”
J. Process Control
,
20
(
5
), pp.
585
595
.
34.
Chang
,
M. K.
, and
Yuan
,
T. H.
,
2009
, “
Experimental Implementations of Adaptive Self-Organizing Fuzzy Sliding Mode Control to a 3-DOF Rehabilitation Robot
,”
Int. J. Innovative Comput. Inf. Control
,
5
(
10
), pp.
3391
3404
.
35.
Chang
,
M. K.
,
2010
, “
Adaptive Self-Organizing Fuzzy Sliding Mode Controller for a 2-DOF Rehabilitation Robot Actuated by Pneumatic Muscle Actuators
,”
Control Eng. Practice
,
18
(
1
), pp.
13
22
.
36.
Soedel
,
W.
,
2004
,
Vibrations of Shells and Plates
,
Marcel Dekker.
,
New York
.
37.
Ljung
,
L.
,
1987
,
System Identification: Theory for the User
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
This content is only available via PDF.
You do not currently have access to this content.