Piezoelectric vibration-based energy harvesting (pVEH) offers much potential as renewable energy structures. Within the literature, often geometry-specific models are developed, making designs of new structures difficult. In this work, a generalized linear algebraic method is developed. The method incorporates the transfer matrix method (TMM) into the well-accepted distributed parameter electromechanical model for a composite-piezoelectric, Euler–Bernoulli beam. The result is an electromechanical TMM which is highly accurate at predicting both structural and energy harvesting performances for a wide variety of designs which have chainlike topologies. A simplification is made within the method to model structures which operate solely within bending modes, reducing the computation to analyses of only four-by-four state transition matrices, regardless of structural complexity. As many applications aim to optimize the large bending mode piezoelectric effect, this simplification does not limit the versatility of the method. To demonstrate the validity of this statement, comparisons were performed to evaluate the accuracy of the method's predictions for six piezoelectric topologies, including a unimorph without a tip mass, a bimorph with a tip mass, several partial-length bimorphs without a tip mass, and three different multibeam bimorph structures with inline and folded-back designs. The results show differences no greater than 2.24% for the first and second natural frequencies of the structures. Likewise, the method yields excellent predictions for the mode shapes, their slopes, and the voltage frequency responses, especially within the ±10% bounds of the natural frequencies. Thus, the future design of new structures is shown to be simplified using this generalizable method.

References

1.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J.
,
2003
, “
A Study of Low Level Vibrations as a Power Source or Wireless Sensor Nodes
,”
Comput. Commun.
,
26
(
11
), pp.
1131
1144
.
2.
Anton
,
S. R.
, and
Sodano
,
H.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
(
3
), pp.
R1
R21
.
3.
Priya
,
S.
, and
Inman
,
D. J.
,
2008
,
Energy Harvesting Technologies
,
Springer-Verlag
,
London
, pp.
123
128
.
4.
Roundy
,
S.
, and
Wright
,
P. K.
,
2004
, “
A Piezoelectric Vibration Based Generator for Wireless Electronics
,”
Smart Mater. Struct.
,
13
(
5
), pp.
1131
1142
.
5.
duToit
,
N. E.
,
Wardle
,
B. L.
, and
Kim
,
S.
,
2005
, “
Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters
,”
Integr. Ferroelectr.
,
71
(
1
), pp.
121
160
.
6.
Sodano
,
H. A.
,
Park
,
G.
, and
Inman
,
D. J.
,
2004
, “
Estimation of Electric Charge Output for Piezoelectric Energy Harvesting
,”
Strain
,
40
(
2
), pp.
49
58
.
7.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.
8.
Wickenheiser
,
A. M.
, and
Garcia
,
E.
,
2010
, “
Power Optimization of Vibration Energy Harvesters Utilizing Passive and Active Circuits
,”
J. Intell. Mater. Syst. Struct.
,
21
(
13
), pp.
1343
4361
.
9.
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
,
18
(
2
), p.
025009
.
10.
Bibo
,
A.
,
Abdelkefi
,
A.
, and
Daqaq
,
M.
,
2015
, “
Modeling and Characterization of a Piezoelectric Energy Harvester Under Combined Aerodynamic and Base Excitations
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031017
.
11.
Ma
,
X.
,
Wilson
,
A.
,
Rahn
,
C. D.
, and
Trolier-McKinstry
,
S.
,
2016
, “
Efficient Energy Harvesting Using Piezoelectric Compliant Mechanisms: Theory and Experiment
,”
ASME J. Vib. Acoust.
,
138
(
2
), p.
021005
.
12.
Pestel
,
E.
, and
Leckie
,
F. A.
,
1963
,
Matrix Methods in Elastomechanics
,
McGraw-Hill
,
New York
, pp.
130
187
.
13.
Karami
,
M. A.
, and
Inman
,
D. J.
,
2011
, “
Analytical Modeling and Experimental Verification of the Vibrations of the Zigzag Micro-Structure for Energy Harvesting
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011002
.
14.
Wickenheiser
,
A. M.
,
2013
, “
Eigensolution of Piezoelectric Energy Harvesters With Geometric Discontinuities: Analytical Modeling and Validation
,”
J. Intell. Mater. Syst. Struct.
,
24
(
6
), pp.
729
744
.
15.
Roundy
,
S.
,
Leland
,
E. S.
,
Baker
,
J.
,
Carleton
,
E.
,
Reilly
,
E.
,
Lai
,
E.
,
Otis
,
B.
,
Rabaey
,
J. M.
,
Wright
,
P. K.
, and
Sundararajan
,
V.
,
2005
, “
Improving Power Output for Vibration-Based Energy Scavengers
,”
Pervasive Comput.
,
4
(
1
), pp.
28
36
.
16.
Reissman
,
T.
,
Dietl
,
J. M.
, and
Garcia
,
E.
,
2007
, “
Modeling and Experimental Verification of Geometry Effects on Piezoelectric Energy Harvesters
,”
3rd Annual Energy Harvesting Workshop
, Santa Fe, NM, Feb. 24–27.
17.
Dietl
,
J. M.
, and
Garcia
,
E.
,
2010
, “
Beam Shape Optimization for Power Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
6
), pp.
633
646
.
18.
Guyomar
,
D.
,
Badel
,
A.
,
Lefeuvre
,
E.
, and
Richard
,
C.
,
2005
, “
Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
4
), pp.
584
595
.
19.
Wu
,
W. J.
,
Wickenheiser
,
A. M.
,
Reissman
,
T.
, and
Garcia
,
E.
,
2009
, “
Modeling and Experimental Verification of Synchronized Discharging Techniques for Boosting Power Harvesting From Piezoelectric Transducers
,”
Smart Mater. Struct.
,
18
(
5
), p.
055012
.
20.
Reissman
,
T.
, and
Garcia
,
E.
,
2008
, “
Electro-Mechanical Effect on Resonances in Fan-Folded Piezoelectric Beam Structures
,”
CanSmart International Workshop on Smart Materials and Smart Structures
, Montreal, QC, Canada, Oct. 23–24.
21.
Ansari
,
M. H.
, and
Karami
,
M. A.
,
2016
, “
Modeling and Experimental Verification of a Fan-Folded Vibration Energy Harvester for Leadless Pacemakers
,”
J. Appl. Phys.
,
119
(
9
), p.
094506
.
22.
Koplow
,
M. A.
,
Bhattacharyya
,
A.
, and
Mann
,
B. P.
,
2006
, “
Closed Form Solutions for the Dynamic Response of Euler–Bernoulli Beams With Step Changes in Cross Section
,”
J. Sound Vib.
,
295
(
1–2
), pp.
214
225
.
23.
Stanton
,
S. C.
, and
Mann
,
B. P.
,
2010
, “
On the Dynamic Response of Beams With Multiple Geometric or Material Discontinuities
,”
Mech. Syst. Signal Process.
,
24
(
5
), pp.
1409
1419
.
24.
Khattak
,
A. R.
,
Garvey
,
S. D.
, and
Popov
,
A. A.
,
2006
, “
Repeated Resonances in Folded-Back Beam Structures
,”
J. Sound Vib.
,
290
(
1–2
), pp.
309
320
.
25.
Hibbeler
,
R. C.
,
2005
,
Mechanics of Materials
, 6th ed.,
Pearson Prentice Hall
,
Upper Saddle River, NJ
, pp.
324
330
.
You do not currently have access to this content.