In this paper, an effective approach to the simulation of wide-sense stationary random time-series, defined by its power spectral density (PSD) is presented. This approach is based on approximating the sample paths of target random process by finite series of sample functions of random processes, obtained as the outputs of suitably chosen set of second-order linear filters to independent limited band Gaussian white noise inputs. Thus, the Gaussian distribution of simulated time-series is obtained without applying the central limit theorem. Also, the Fourier spectra of the simulated sample paths are not discrete functions, as in the case of the multisine random time-series representation used by most classical simulation methods. The method can be applied to any analytical or nonparametric representation of the specified PSD. The proposed approach is applied to simulation of road input sample paths, compatible with PSDs described by analytical forms that can or cannot be derived by linear shape filters. The method is validated by comparison of spectral response of a half-car model to the input induced by a measured road profile with that obtained for the simulated road input. This input is derived from the nonparametric PSD, determined by third-octave filtering of the measured profile. The advantages of the proposed approach are highlighted by its comparison with a conventional method, based on the representation of simulated road input by a sum of harmonics with random phases.

References

References
1.
Wang
,
F.
,
Zhang
,
J.
,
Huang
,
B.
,
Wang
,
Z.
, and
Wang
,
J.
,
2015
, “
Random Vibration of Diamond-Beaded Rope Subject to a Concentrated Load
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011003
.
2.
Hac
,
A.
,
1987
, “
Adaptive Control of Vehicle Suspension
,”
Veh. Syst. Dyn.
,
16
(
2
), pp.
57
74
.
3.
Stăncioiu
,
D.
,
Sireteanu
,
T.
,
Giuclea
,
M.
, and
Mitu
,
A. M.
,
2003
, “
Simulation of Random Road Profiles With Specified Spectral Density
,”
Annual Symposium of the Institute of Solid Mechanics (SISOM)
,
Bucharest, Romania
, pp.
331
338
.
4.
Turkay
,
S.
, and
Akcay
,
H.
,
2005
, “
A Study of Random Vibration Characteristics of the Quarter-Car Model
,”
J. Sound Vib.
,
282
, pp.
111
124
.
5.
Tyan
,
F.
,
Hong
,
Y.-F.
,
Tu
,
S.-H.
, and
Jeng
,
W. S.
,
2009
, “
Generation of Random Road Profiles
,”
J. Adv. Eng.
,
4
(
2
), pp.
151
152
.
6.
ISO 8608
,
1995
, “
Mechanical Vibration—Road Surface Profiles—Reporting of Measured Data
,” International Organization for Standardization, Geneva, Switzerland, ISO Standard No. 8608.
7.
Múčka
,
P.
,
2004
, “
Road Waviness and the Dynamic Tyre Force
,”
Int. J. Veh. Des.
,
36
(
2–3
), pp.
216
232
.
8.
Andren
,
P.
,
2006
, “
Power Spectral Density Approximations of Longitudinal Road Profiles
,”
Int. J. Veh. Des.
,
40
(
1–3
), pp.
2
14
.
9.
Múčka
,
P.
,
2012
, “
Longitudinal Road Profile Spectrum Approximation by Split Straight Lines
,”
J. Transp. Eng.—ASCE
,
138
(
2
), pp.
243
251
.
10.
Shinozuka
,
M.
, and
Jan
,
C.-M.
,
1972
, “
Digital Simulation of Random Processes and Its Applications
,”
J. Sound Vib.
,
25
(
1
), pp.
111
128
.
11.
Figwer
,
G.
,
1997
, “
A New Method of Random Time-Series Simulation
,”
Simul. Pract. Theory
,
5
(3), pp.
217
234
.
12.
Cebon
,
D.
,
1999
,
Handbook of Vehicle–Road Interaction
,
Swets & Zeitlinger Publishers
,
Lisse, The Netherlands
.
13.
Ngwangwa
,
H. M.
,
Heyns
,
P. S.
,
Labuschagne
,
F. J. J.
, and
Kululanga
,
G. K.
,
2010
, “
Reconstruction of Road Defects and Road Roughness Classification Using Vehicle Responses With Artificial Neural Networks Simulation
,”
J. Terramechanics
,
47
(
2
), pp.
97
111
.
14.
Grigoriu
,
M.
,
1993
, “
On the Spectral Representation Method in Simulation
,”
Probab. Eng. Mech.
,
8
(
2
), pp.
75
90
.
15.
Michalewicz
,
Z.
,
1992
,
Genetic Algorithms + Data Structures = Evolution Programs
,
Springer Verlag
,
Berlin
.
16.
Dodds
,
C. J.
, and
Robson
,
J. D.
,
1973
, “
The Description of Road Surface Roughness
,”
J. Sound Vib.
,
31
(
2
), pp.
175
184
.
17.
Kamash
,
K. M. A.
, and
Robson
,
J. D.
,
1977
, “
Implications of Isotropy in Random Surface
,”
J. Sound Vib.
,
54
(1), pp.
1
13
.
18.
Chemistruck
,
H. M.
,
Detweiler
,
Z. R.
,
Ferris
,
J. B.
,
Reidb
,
A. A.
, and
Gorsich
,
D. J.
,
2009
, “
Review of Current Developments in Terrain Characterization and Modeling
,”
Proc. SPIE
,
7348
, p.
73480N
.
19.
Sireteanu
,
T.
,
Gündisch
,
O.
, and
Părăianu
,
S.
,
1981
,
Random Vibrations of Automobiles
,
Technical Printing House
,
Bucharest, Romania
(in Romanian).
20.
Abramov
,
S.
,
Mannan
,
S.
, and
Durieux
,
O.
,
2009
, “
Semi-Active Suspension System Simulation Using SIMULINK
,”
Int. J. Eng. Syst. Modell. Simul.
,
1
(2–3), pp.
101
114
.
21.
Giuclea
,
M.
,
Sireteanu
,
T.
,
Stancioiu
,
D.
, and
Stammers
,
C. W.
,
2004
, “
Model Parameter Identification for Vehicle Vibration Control With Magnetorheological Dampers Using Computational Intelligence Methods
,”
Proc. Inst. Mech. Eng. Part I
,
17
, pp.
569
581
.
22.
LaBarre
,
R. P.
,
Forbes
,
R. T.
, and
Andrew
,
S.
,
1969
, “
The Measurement and Analysis of Road Surface Roughness
,”
Motor Industry Research Association
,
Lindley, UK
, MIRA Report No. 1970/5.
23.
Barbosa
,
R. S.
,
2011
, “
Vehicle Dynamic Response Due to Pavement Roughness
,”
J. Braz. Soc. Mech. Sci. Eng.
,
33
, pp.
302
307
.
24.
Guglielmino
,
E.
,
Sireteanu
,
T.
,
Stammers
,
C. W.
,
Ghita
,
Gh.
, and
Giuclea
,
M.
,
2008
,
Semi-Active Suspention Control. Improved Vehicle Ride and Road Friendliness
,
Springer-Verlag
,
London
.
You do not currently have access to this content.