The field of random vibrations of large-scale systems with millions of degrees-of-freedom (DOF) is of significant importance in many engineering disciplines. In this paper, we propose a method to calculate the time-dependent reliability of linear vibratory systems with random parameters excited by nonstationary Gaussian processes. The approach combines principles of random vibrations, the total probability theorem, and recent advances in time-dependent reliability using an integral equation involving the upcrossing and joint upcrossing rates. A space-filling design, such as optimal symmetric Latin hypercube (OSLH) sampling, is first used to sample the input parameter space. For each design point, the corresponding conditional time-dependent probability of failure is calculated efficiently using random vibrations principles to obtain the statistics of the output process and an efficient numerical estimation of the upcrossing and joint upcrossing rates. A time-dependent metamodel is then created between the input parameters and the output conditional probabilities allowing us to estimate the conditional probabilities for any set of input parameters. The total probability theorem is finally applied to calculate the time-dependent probability of failure. The proposed method is demonstrated using a vibratory beam example.
Skip Nav Destination
Article navigation
June 2016
Research-Article
Time-Dependent Reliability Analysis of Vibratory Systems With Random Parameters
Zissimos P. Mourelatos,
Zissimos P. Mourelatos
Mechanical Engineering Department,
Oakland University,
2200 N. Squirrel Road,
Rochester, MI 48309
e-mail: mourelat@oakland.edu
Oakland University,
2200 N. Squirrel Road,
Rochester, MI 48309
e-mail: mourelat@oakland.edu
Search for other works by this author on:
Monica Majcher,
Monica Majcher
Mechanical Engineering Department,
Oakland University,
2200 N. Squirrel Road,
Rochester, MI 48309
e-mail: mtmajch2@oakland.edu
Oakland University,
2200 N. Squirrel Road,
Rochester, MI 48309
e-mail: mtmajch2@oakland.edu
Search for other works by this author on:
Vasileios Geroulas
Vasileios Geroulas
Mechanical Engineering Department,
Oakland University,
2200 N. Squirrel Road,
Rochester, MI 48309
e-mail: vgeroula@oakland.edu
Oakland University,
2200 N. Squirrel Road,
Rochester, MI 48309
e-mail: vgeroula@oakland.edu
Search for other works by this author on:
Zissimos P. Mourelatos
Mechanical Engineering Department,
Oakland University,
2200 N. Squirrel Road,
Rochester, MI 48309
e-mail: mourelat@oakland.edu
Oakland University,
2200 N. Squirrel Road,
Rochester, MI 48309
e-mail: mourelat@oakland.edu
Monica Majcher
Mechanical Engineering Department,
Oakland University,
2200 N. Squirrel Road,
Rochester, MI 48309
e-mail: mtmajch2@oakland.edu
Oakland University,
2200 N. Squirrel Road,
Rochester, MI 48309
e-mail: mtmajch2@oakland.edu
Vasileios Geroulas
Mechanical Engineering Department,
Oakland University,
2200 N. Squirrel Road,
Rochester, MI 48309
e-mail: vgeroula@oakland.edu
Oakland University,
2200 N. Squirrel Road,
Rochester, MI 48309
e-mail: vgeroula@oakland.edu
1Corresponding author.
Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received March 29, 2015; final manuscript received January 21, 2016; published online April 7, 2016. Assoc. Editor: Mohammed Daqaq.
J. Vib. Acoust. Jun 2016, 138(3): 031007 (9 pages)
Published Online: April 7, 2016
Article history
Received:
March 29, 2015
Revised:
January 21, 2016
Citation
Mourelatos, Z. P., Majcher, M., and Geroulas, V. (April 7, 2016). "Time-Dependent Reliability Analysis of Vibratory Systems With Random Parameters." ASME. J. Vib. Acoust. June 2016; 138(3): 031007. https://doi.org/10.1115/1.4032720
Download citation file:
Get Email Alerts
Designing Topological Acoustic Lattices via Electroacoustic Analogies
J. Vib. Acoust (October 2023)
On the Feasibility of Dynamic Substructuring for Hybrid Testing of Vibrating Structures
J. Vib. Acoust (August 2023)
Related Articles
Dynamic Reliability Evaluation of Nonrepairable Multistate Weighted k -Out-of- n System With Dependent Components Based on Copula
ASME J. Risk Uncertainty Part B (December,2018)
First-Passage Problem in Random Vibrations With Radial Basis Function Neural Networks
J. Vib. Acoust (October,2022)
A Modified Reliability Index Approach for Reliability-Based Design Optimization
J. Mech. Des (April,2011)
On Estimating the Reliability of Multiple Failure Region Problems Using Approximate Metamodels
J. Mech. Des (December,2009)
Related Proceedings Papers
Related Chapters
A PSA Update to Reflect Procedural Changes (PSAM-0217)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression System: A Practical Approach, Third Edition