Beamforming based on microphone array measurements is a popular method for identifying sound sources. However, beamforming has many limitations that limit their precision. These limitations are addressed in research. To separate the contributions which come from two sides of the microphone array more accurately, an innovative beamforming method based on a double-layer microphone array, called functional generalized inverse beamforming (FGIB), is proposed to improve beamforming performance. This method, which involves the use of a priori beamforming regularization matrix and a matrix function to redefine the inverse problem, is combined with the advantages of both generalized inverse beamforming (GIB) and functional beamforming. Compared with GIB, with reduced iterations, the computational efficiency of FGIB is greatly improved. The dynamic range of the proposed method can be modestly improved as order v increases. Furthermore, the sidelobes gradually disappear and the mainlobes become narrower. Both simulations and experiments have shown that the sources are correctly located and separated. The proposed FGIB demonstrates the good performance when compared to other beamforming methods in terms of resolution and sidelobes level.

References

References
1.
Maynard
,
J. D.
,
Williams
,
E. G.
, and
Lee
,
Y.
,
1984
, “
Nearfield Acoustic Holography: I. Theory of Generalized Holography and the Development of NAH
,”
J. Acoust. Soc. Am.
,
78
(
4
), pp.
1395
1412
.
2.
Veronesi
,
W. A.
, and
Maynard
,
J. D.
,
1987
, “
Nearfield Acoustic Holography (NAH) II. Holographic Reconstruction Algorithms and Computer Implementation
,”
J. Acoust. Soc. Am.
,
81
(
5
), pp.
1307
1321
.
3.
Vigoureux
,
D.
,
Totaro
,
N.
,
Lagneaux
,
J.
, and
Guyader
,
J. L.
,
2015
, “
Inverse Patch Transfer Functions Method as a Tool for Source Field Identification
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021006
.
4.
Hald
,
J.
,
2004
, “
Combined NAH and Beamforming Using the Same Microphone Array
,”
Sound Vib.
,
38
(
12
), pp.
18
25
.
5.
Holland
,
K. R.
, and
Nelson
,
P. A.
,
2012
, “
An Experimental Comparison of the Focused Beamformer and the Inverse Method for the Characterization of Acoustic Sources in Ideal and Non-Ideal Acoustic Environments
,”
J. Sound Vib.
,
331
(
20
), pp.
4425
4437
.
6.
Sydow
,
C.
,
1994
, “
Broadband Beamforming for a Microphone Array
,”
J. Acoust. Soc. Am.
,
96
(
2
), pp.
845
849
.
7.
Lee
,
C.
, and
Lee
,
J. H.
,
1994
, “
Robust Adaptive Array Beamforming Under Steering Vector
,”
IEEE Trans. Antennas Propag.
,
45
(
1
), pp.
168
175
.
8.
Cho
,
Y. T.
, and
Michael
,
J. R.
,
2009
, “
Adaptive Near-Field Beamforming Techniques for Sound Source Imaging
,”
J. Acoust. Soc. Am.
,
125
(
2
), pp.
944
957
.
9.
Li
,
M.
,
Wei
,
L.
,
Fu
,
Q.
, and
Yang
,
D. B.
,
2015
, “
Ghost Image Suppression Based on Particle Swarm Optimization-MVDR in Sound Field Reconstruction
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031007
.
10.
Pascal
,
J. C.
, and
Li
,
J. F.
,
2006
, “
Use of Double Layer Beamforming Antenna to Identify and Locate Noise Sources in Cabins
,”
6th European Conference on Noise Control: Advanced Solutions for Noise Control
(
EURONOISE 2006
), Tampere, Finland, May 30–June 1.
11.
Pascal
,
J. C.
, and
Li
,
J. F.
,
2003
, “
On the Use of Double Layer Beamforming Antenna for Industrial Applications
,”
5th European Conference on Noise Control: Advanced Solutions for Noise Control
, Naples, Italy, June 19–21, Paper No. 299.
12.
Brooks
,
T. F.
, and
Humphreys
,
W. M.
,
2006
, “
A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined From Phased Microphone Arrays
,”
J. Sound Vib.
,
294
(
4
), pp.
856
879
.
13.
Suzuki
,
T.
,
2010
, “
DAMAS2 Using a Point Spread Function Weakly Varying in Space
,”
AIAA J.
,
48
(
9
), pp.
2165
2169
.
14.
Sijtsma
,
P.
,
2010
, “
CLEAN Based on Spatial Source Coherence
,”
Int. J. Aeroacoust.
,
6
(
4
), pp.
357
374
.
15.
Suzuki
,
T.
,
2011
, “
L1 Generalized Inverse Beamforming Algorithm Resolving Coherent Incoherent, Distributed and Multipole Sources
,”
J. Sound Vib.
,
330
(
24
), pp.
5835
5851
.
16.
Zavala
,
P. A. G.
,
Roeck
,
W. D.
,
Janssens
,
K.
,
Arruda
,
J. R. F.
,
Sas
,
P.
, and
Desmet
,
W.
,
2011
, “
Generalized Inverse Beamforming With Optimized Regularization Strategy
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
928
939
.
17.
Gauthier
,
P. A.
,
Camier
,
C.
,
Pasco
,
Y.
,
Berry
,
A.
,
Chambatte
,
E.
,
Lapointe
,
R.
, and
Delalay
,
M. A.
,
2011
, “
Beamforming Regularization Matrix and Inverse Problems Applied to Sound Field Measurement and Extrapolation Using Microphone Array
,”
J. Sound Vib.
,
330
(
24
), pp.
5852
5877
.
18.
Padois
,
T.
,
Gauthier
,
P. A.
,
Berry
,
A.
, and
Berry
,
A.
,
2014
, “
Inverse Problem With Beamforming Regularization Matrix Applied to Sound Source Localization in Closed Wind-Tunnel Using Microphone Array
,”
J. Sound Vib.
,
333
(
25
), pp.
6858
6868
.
19.
Dougherty
,
R. P.
,
2014
, “
Functional Beamforming
,”
5th Berlin Beamforming Conference
(
BeBeC
), Berlin, Feb. 19–20, Paper No. BeBeC-2014-01.
20.
Dougherty
,
R. P.
,
2014
, “
Functional Beamforming for Aeroacoustic Source Distributions
,”
20th AIAA/CEAS Aeroacoustics Conference
, Atlanta, GA, June 16–20,
AIAA
Paper No. 2014-3066.
21.
Calvetti
,
D.
,
Morigi
,
S.
,
Reichel
,
L.
, and
Sgallari
,
F.
,
2000
, “
Tikhonov Regularization and the L-Curve for Large Discrete Ill-Posed Problems
,”
J. Comput. Appl. Math.
,
123
(
1–2
), pp.
423
446
.
22.
Yoon
,
S. H.
, and
Nelson
,
P. A.
,
2000
, “
Estimation of Acoustic Source Strength by Inverse Methods: Part II, Experimental Investigation of Methods for Choosing Regularization Parameters
,”
J. Sound Vib.
,
233
(
4
), pp.
665
701
.
23.
Comesana
,
D. F.
,
Wind
,
J.
, and
Grosso
,
A.
,
2011
, “
Far Field Source Localization Using Two Transducers: A ‘Virtual Array’ Approach
,”
18th International Congress on Sound and Vibration Conference
(
ICSV18
), Rio de Janeiro, Brazil, July 10–14.
24.
Comesana
,
D. F.
,
Holland
,
K.
,
Wind
,
J.
, and
Bree
,
H. E. D.
,
2012
, “
Adapting Beamforming Techniques for Virtual Sensor Arrays
,”
4th Berlin Beamforming Conference
(
BeBeC
), Berlin, Feb. 22–23, Paper No. BeBeC-2012-10.
You do not currently have access to this content.