Magnetorheological (MR) dampers are one of the most promising devices for mitigation of vibration of engineering structures due to earthquakes and wind excitation. In this paper, a compact two-column model of an MR fluid is proposed in order to formulate a general solution for calculation of the yield shear stress of an MR fluid. The magnetic induction intensity in the damping gap, which is the key parameter of the compact two-column model, is determined through simulation of the magnetic circuit of the MR damper. To verify the effectiveness and significance of the proposed model, damping forces calculated based on the proposed model and the traditional single-chain model are compared with the experimental data. Results show that the proposed compact two-column model is more accurate and that it can describe the rheological properties of the MR fluids very well.

References

References
1.
Ashour
,
O.
,
Rogers
,
C. A.
, and
Kordonsky
,
W.
,
1996
, “
Magnetorheological Fluids: Materials, Characterization, and Devices
,”
J. Intell. Mater. Syst. Struct.
,
7
(
2
), pp.
123
130
.
2.
Zipser
,
L.
,
Richter
,
L.
, and
Lange
,
U.
,
2001
, “
Magnetorheologic Fluids for Actuators
,”
Sens. Actuators A
,
92
(
1
), pp.
318
325
.
3.
Yao
,
G.
,
Yap
,
F.
,
Chen
,
G.
,
Li
,
W.
, and
Yeo
,
S.
,
2002
, “
MR Damper and Its Application for Semi-Active Control of Vehicle Suspension System
,”
Mechatronics
,
12
(
7
), pp.
963
973
.
4.
Guan
,
Y.
, and
Huang
,
W.
,
2002
, “
The Application of MR Damper in the Semi-Active Vibration Control for Offshore Platform
,”
China Offshore Platform
,
17
(
3
), pp.
25
28
.
5.
Xu
,
Z. D.
,
Shen
,
Y. P.
, and
Guo
,
Y. Q.
,
2003
, “
Semi-Active Control of Structures Incorporated With Magnetorheological Dampers Using Neural Networks
,”
Smart Mater. Struct.
,
12
(
1
), pp.
80
87
.
6.
Xu
,
Z. D.
,
Sha
,
L. F.
,
Zhang
,
X. C.
, and
Ye
,
H. H.
,
2013
, “
Design, Performance Test and Analysis on Magnetorheological Damper for Earthquake Mitigation
,”
Struct. Control Health Monit.
,
20
(
6
), pp.
956
970
.
7.
Wereley
,
N. M.
, and
Pang
,
L.
,
1998
, “
Nondimensional Analysis of Semi-Active Electrorheological and Magnetorheological Dampers Using Approximate Parallel Plate Models
,”
Smart Mater. Struct.
,
7
(
5
), pp.
732
743
.
8.
Wang
,
X.
, and
Gordaninejad
,
F.
,
1999
, “
Flow Analysis of Field-Controllable, Electro- and Magneto-Rheological Fluids Using Herschel–Bulkley Model
,”
J. Intell. Mater. Syst. Struct.
,
10
(
8
), pp.
601
608
.
9.
Wang
,
X.
, and
Gordaninejad
,
F.
,
2007
, “
Flow Analysis and Modeling of Field-Controllable, Electro- and Magneto-Rheological Fluid Dampers
,”
ASME J. Appl. Mech.
,
74
(
1
), pp.
13
22
.
10.
Yang
,
G.
,
Spencer
,
B.
, Jr.
,
Carlson
,
J.
, and
Sain
,
M.
,
2002
, “
Large-Scale MR Fluid Dampers: Modeling and Dynamic Performance Considerations
,”
Eng. Struct.
,
24
(
3
), pp.
309
323
.
11.
Dyke
,
S.
,
Spencer
,
B.
, Jr.
,
Sain
,
M.
, and
Carlson
,
J.
,
1996
, “
Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction
,”
Smart Mater. Struct.
,
5
(
5
), pp.
565
575
.
12.
Spencer
,
B.
,
Dyke
,
S.
,
Sain
,
M.
, and
Carlson
,
J.
,
1997
, “
Phenomenological Model for Magnetorheological Dampers
,”
J. Eng. Mech.
,
123
(
3
), pp.
230
238
.
13.
Dominguez
,
A.
,
Sedaghati
,
R.
, and
Stiharu
,
I.
,
2006
, “
A New Dynamic Hysteresis Model for Magnetorheological Dampers
,”
Smart Mater. Struct.
,
15
(
5
), pp.
1179
1189
.
14.
Xu
,
Z. D.
,
Jia
,
D. H.
, and
Zhang
,
X. C.
,
2012
, “
Performance Tests and Mathematical Model Considering Magnetic Saturation for Magnetorheological Damper
,”
J. Intell. Mater. Syst. Struct.
,
23
(
12
), pp.
1331
1349
.
15.
Bossis
,
G.
, and
Lemaire
,
E.
,
1991
, “
Yield Stresses in Magnetic Suspensions
,”
J. Rheol.
,
35
(
7
), pp.
1345
1354
.
16.
Shkel
,
Y.
, and
Klingenberg
,
D.
,
2001
, “
Magnetorheology and Magnetostriction of Isolated Chains of Nonlinear Magnetizable Spheres
,”
J. Rheol.
,
45
(
2
), pp.
351
368
.
17.
Peng
,
X.
, and
Li
,
H.
,
2007
, “
Analysis of the Magnetomechanical Behavior of MRFs Based on Micromechanics Incorporating a Statistical Approach
,”
Smart Mater. Struct.
,
16
(
6
), pp.
2477
2485
.
18.
Yi
,
C.
,
Peng
,
X.
, and
Zhao
,
C.
,
2010
, “
A Magnetic-Dipoles-Based Micro–Macro Constitutive Model for MRFs Subjected to Shear Deformation
,”
Rheol. Acta
,
49
(
8
), pp.
815
825
.
19.
Guo
,
C. W.
,
Chen
,
F.
,
Meng
,
Q. R.
, and
Dong
,
Z. X.
,
2014
, “
Yield Shear Stress Model of Magnetorheological Fluids Based on Exponential Distribution
,”
J. Magn. Magn. Mater.
,
360
(
9
), pp.
174
177
.
20.
Li
,
H.
,
Peng
,
X.
, and
Chen
,
W.
,
2005
, “
Simulation of the Chain-Formulation Process in Magnetic Fields
,”
J. Intell. Mater. Syst. Struct.
,
16
(7–8), pp.
653
658
.
21.
Yi
,
C. J.
,
Peng
,
X. H.
, and
Li
,
H. T.
,
2008
, “
Numerical Simulation of Dynamics of Ferromagnetic Particles in MRFS Under Static Magnetic Fields
,”
Advances in Heterogeneous Material Mechanics 2008
, pp.
1506
1509
.
22.
Phillips
,
R. W.
,
1969
,
Engineering Applications of Fluids With a Variable Yield Stress
,
University of California
,
Berkeley, CA
.
You do not currently have access to this content.