Developing energy harvesting platforms that are strongly sensitive to the low and diffused frequency spectra of common environmental vibration sources is a research objective receiving great recent attention. It has been found that utilizing designs and incorporating structural influences that induce small values of linear stiffness may considerably enhance the power generation capabilities of energy harvesting systems. This research examines these two factors in new light toward the development of a biologically-inspired energy harvesting beam platform that exploits axial compressive effects and compliant suspensions. Through theory and experiments, it is found that the strategic exploitation of such characteristics promotes dramatic improvements in the average power that may be generated for the same excitation conditions. Examining the origin of these performance enhancements, it is seen that large compliance in the compressed axial suspensions facilitates a favorable redistribution of dynamic energy, which thereby enables greater bending of the harvester beam and increased electromechanical transduction.

References

References
1.
Elvin
,
N.
, and
Erturk
,
A.
,
2013
,
Advances in Energy Harvesting Methods
,
Springer
,
New York
.
2.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.
3.
Aladwani
,
A.
,
Arafa
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2012
, “
Cantilevered Piezoelectric Energy Harvester With a Dynamic Magnifier
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031004
.
4.
Yang
,
J.
,
Wen
,
Y.
, and
Li
,
P.
,
2011
, “
Magnetoelectric Energy Harvesting From Vibrations of Multiple Frequencies
,”
J. Intell. Mater. Syst. Struct.
,
22
(
14
), pp.
1631
1639
.
5.
Gu
,
L.
, and
Livermore
,
C.
,
2011
, “
Impact-Driven, Frequency Up-Converting Coupled Vibration Energy Harvesting Device for Low Frequency Operation
,”
Smart Mater. Struct.
,
20
(
4
), p.
045004
.
6.
Galchev
,
T.
,
Kim
,
H.
, and
Najafi
,
K.
,
2011
, “
Micro Power Generator for Harvesting Low-Frequency and Nonperiodic Vibrations
,”
J. Microelectromech. Syst.
,
20
(
4
), pp.
852
866
.
7.
Halvorsen
,
E.
,
2013
, “
Fundamental Issues in Nonlinear Wideband-Vibration Energy Harvesting
,”
Phys. Rev. E
,
87
, p.
042129
.
8.
Green
,
P. L.
,
Worden
,
K.
,
Atallah
,
K.
, and
Sims
,
N. D.
,
2012
, “
The Benefits of Duffing-Type Nonlinearities and Electrical Optimisation of a Mono-Stable Energy Harvester Under White Gaussian Excitations
,”
J. Sound Vib.
,
331
(
20
), pp.
4504
4517
.
9.
Leadenham
,
S.
, and
Erturk
,
A.
,
2014
, “
M-Shaped Asymmetric Nonlinear Oscillator for Broadband Vibration Energy Harvesting: Harmonic Balance Analysis and Experimental Validation
,”
J. Sound Vib.
,
333
(
23
), pp.
6209
6223
.
10.
Meimukhin
,
D.
,
Cohen
,
N.
, and
Bucher
,
I.
,
2013
, “
On the Advantage of a Bistable Energy Harvesting Oscillator Under Bandlimited Stochastic Excitation
,”
J. Intell. Mater. Syst. Struct.
,
24
(
14
), pp.
1736
1746
.
11.
Zhao
,
S.
, and
Erturk
,
A.
,
2013
, “
On the Stochastic Excitation of Monostable and Bistable Electroelastic Power Generators: Relative Advantages and Tradeoffs in a Physical System
,”
Appl. Phys. Lett.
,
102
(
10
), p.
103902
.
12.
Cao
,
J.
,
Zhou
,
S.
,
Inman
,
D. J.
, and
Lin
,
J.
,
2015
, “
Nonlinear Dynamic Characteristics of Variable Inclination Magnetically Coupled Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021015
.
13.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
14.
Tang
,
L.
, and
Yang
,
Y.
,
2012
, “
A Nonlinear Piezoelectric Energy Harvester With Magnetic Oscillator
,”
Appl. Phys. Lett.
,
101
(
9
), p.
094102
.
15.
Wu
,
Z.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2014
, “
Energy Harvester Synthesis Via Coupled Linear-Bistable System With Multistable Dynamics
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
061005
.
16.
Chen
,
L. Q.
, and
Jiang
,
W. A.
,
2015
, “
Internal Resonance Energy Harvesting
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031004
.
17.
Thomson
,
A. J.
, and
Thompson
,
W. A.
,
1977
, “
Dynamics of a Bistable System: The Click Mechanism in Dipteran Flight
,”
Acta Biotheor.
,
26
(
1
), pp.
19
29
.
18.
Miyan
,
J. A.
, and
Ewing
,
A. W.
,
1985
, “
How Diptera Move Their Wings: A Re-Examination of the Wing Base Articulation and Muscle Systems Concerned With Flight
,”
Philos. Trans. R. Soc. London, Part B
,
311
(
1150
), pp.
271
302
.
19.
Timoshenko
,
S. P.
,
1936
,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
21.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2015
, “
Dipteran Wing Motor-Inspired Flapping Flight Versatility and Effectiveness Enhancement
,”
J. R. Soc. Interface
,
12
(
104
), p.
20141367
.
22.
Dickinson
,
M. H.
, and
Tu
,
M. S.
,
1997
, “
The Function of Dipteran Flight Muscle
,”
Comp. Biochem. Physiol., Part A
,
116
(
3
), pp.
223
238
.
23.
Rao
,
S. S.
,
2004
,
Mechanical Vibrations
, 4th ed.,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
24.
Meirovitch
,
L.
,
1967
,
Analytical Methods in Vibration
,
Macmillan
,
New York
.
25.
Hodges
,
D. H.
,
1984
, “
Proper Definition of Curvature in Nonlinear Beam Kinematics
,”
AIAA J.
,
22
(
12
), pp.
1825
1827
.
26.
Preumont
,
A.
,
2006
,
Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems
,
Springer
,
Dordrecht
.
27.
Mayers
,
J.
, and
Wrenn
,
B. G.
,
1964
, “
Combined Influence of Higher-Order Linear Effects and Nonlinear Effects on the Lateral Vibration Behavior of Solid and Sandwich Beams
,” Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, SADAER Report No. 208.
28.
Wagg
,
D.
, and
Neild
,
S.
,
2010
,
Nonlinear Vibration With Control: For Flexible and Adaptive Structures
,
Springer
,
Dordrecht
.
29.
Inman
,
D. J.
,
2001
,
Engineering Vibration
,
Prentice Hall
,
Upper Saddle River, NJ
.
30.
Wu
,
Z.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2015
, “
Excitation-Induced Stability in a Bistable Duffing Oscillator: Analysis and Experiment
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011016
.
31.
Geiyer
,
D.
, and
Kauffman
,
J. L.
,
2015
, “
Chaotification as a Means of Broadband Energy Harvesting With Piezoelectric Materials
,”
ASME J. Vib. Acoust.
,
137
(
5
), p.
051005
.
You do not currently have access to this content.