As a locally resonant (LR) elastic system, a uniform Euler–Bernoulli beam suspended with force and moment resonators has complicated band-gap mechanisms and richer dispersive characteristics. In this paper, we consider the use of the force and moment resonators in a noncollocated manner. On the LR beam, the force-type vibrators and the moment-type vibrators are alternatingly arranged, with a separation distance. We present an analytical study of the dispersion characteristics of the LR system, especially the effects of the separation distance on further widening the frequency stop bands. In addition, the complex dispersion properties on the frequency axis are described using a formulation different from the common approach.

References

References
1.
Mead
,
D. J.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964–1995
,”
J. Sound Vib.
,
193
(
3
), pp.
495
524
.
2.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2006
, “
Dispersive Elastodynamics of 1D Banded Materials and Structures: Analysis
,”
J. Sound Vib.
,
289
(
4–5
), pp.
779
806
.
3.
Goffaux
,
C.
,
Sánchez-Dehesa
,
J.
,
Yeyati
,
L.
,
Lambin
,
Ph.
,
Khelif
,
A.
,
Vasseur
,
J. O.
, and
Djafari-Rouhani
,
B.
,
2002
, “
Evidence of Fano-Like Interference Phenomena in Locally Resonant Materials
,”
Phys. Rev. Lett.
,
88
(
22
), p.
225502
.
4.
Graff
,
K. F.
,
1975
,
Wave Motion in Elastic Solids
,
Oxford University Press
,
London
.
5.
Liu
,
Z. Y.
,
Zhang
,
X. X.
,
Mao
,
Y. W.
,
Zhu
,
Y. Y.
,
Yang
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Crystals
,”
Science
,
289
(
5485
), pp.
1734
1736
.
6.
Liu
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2005
, “
Analytical Model of Phononic Crystals With Local Resonances
,”
Phys. Rev. B
,
71
(
1
), p.
014103
.
7.
Yu
,
D.
,
Liu
,
Y.
,
Wang
,
G.
,
Zhao
,
H.
, and
Qiu
,
J.
,
2006
, “
Flexural Vibration Band Gaps in Timoshenko Beams With Locally Resonant Structures
,”
J. Appl. Phys.
,
100
(
12
), p.
124901
.
8.
Yu
,
D. L.
,
Liu
,
Y. Z.
,
Zhao
,
H. G.
,
Wang
,
G.
, and
Qiu
,
J.
,
2006
, “
Flexural Vibration Band Gaps in Euler-Bernoulli Beams With Locally Resonant Structures With Two Degrees of Freedom
,”
Phys. Rev. B
,
73
(
6
), p.
064301
.
9.
Liu
,
L.
, and
Hussein
,
M.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011003
.
10.
Xiao
,
Y.
,
Mace
,
B. R.
,
Wen
,
J. H.
, and
Wen
,
X. S.
,
2011
, “
Formation and Coupling of Band Gaps in a Locally Resonant Elastic System Comprising a String With Attached Resonators
,”
Phys. Lett. A
,
375
(
12
), pp.
1485
1491
.
11.
Xiao
,
Y.
,
Wen
,
J.
,
Yu
,
D.
, and
Wen
,
X.
,
2013
, “
Flexural Wave Propagation in Beams With Periodically Attached Vibration Absorbers: Band-Gap Behavior and Band Formation Mechanisms
,”
J. Sound Vib.
,
332
(
4
), pp.
867
893
.
12.
Wang
,
M. Y.
, and
Wang
,
X.
,
2013
, “
Frequency Band Structure of Locally Resonant Periodic Flexural Beams Suspended With Force-Moment Resonators
,”
J. Phys. D: Appl. Phys.
,
46
(
25
), p.
255502
.
13.
Salleh
,
H.
, and
Brennan
,
M. J.
,
2007
, “
Control of Flexural Waves on a Beam Using a Vibration Neutralizer: Effects of Different Attachment Configurations
,”
J. Sound Vib.
,
303
(3), pp.
501
504
.
14.
Gao
,
Y.
,
Brennan
,
M. J.
, and
Sui
,
F.
,
2011
, “
Control of Flexural Waves on a Beam Using Distributed Vibration Neutralizers
,”
J. Sound Vib.
,
330
(
12
), pp.
2758
2771
.
15.
Xiao
,
Y.
,
Wen
,
J.
, and
Wen
,
X.
,
2012
, “
Broadband Locally Resonant Beams Containing Multiple Periodic Arrays of Attached Resonators
,”
Phys. Lett. A
,
376
(
16
), pp.
1384
1390
.
16.
Xiao
,
Y.
,
Wen
,
J.
,
Wang
,
G.
, and
Wen
,
X.
,
2013
, “
Theoretical and Experimental Study of Locally Resonant and Bragg Band Gaps in Flexural Beams Carrying Periodical Arrays of Beam-Like Resonators
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041006
.
17.
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2014
, “
Vibration Characteristics of Metamaterial Beams With Periodic Local Resonances
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061012
.
You do not currently have access to this content.