Optimal vibration absorbers are designed using the definition of H-infinity norm and numerical optimization. The cases of both constant amplitude excitation and rotating unbalance excitation are considered. The design procedure is quite general, and can easily handle multiple modes of vibration. A general procedure to construct a root loci plot is also developed. Using a cantilever beam, numerical results are presented.
Issue Section:
Technical Brief
Keywords:
Vibration control
References
1.
Den Hartog
, J. P.
, 1985
, Mechanical Vibrations
, Dover Publications
, Mineola, NY.2.
Sinha
, A.
, 2010
, Vibration of Mechanical Systems
, Cambridge University Press
, Cambridge, UK.3.
Sun
, J. Q.
, Jolly
, M. R.
, and Norris
, M. A.
, 1995
, “Passive, Adaptive and Active Tuned Vibration Absorbers—A Survey
,” ASME J. Vib. Acoust.
, 117
(B
), pp. 234
–242
.10.1115/1.28386684.
Sinha
, A.
, 2009
, “Optimal Damped Vibration Absorber for Narrow Band Random Excitations: A Mixed Optimization
,” Probab. Eng. Mech.
, 24
(2
), pp. 251
–254
.10.1016/j.probengmech.2008.06.0055.
Pennestri
, E.
, 1998
, “An Application of Chebyshev's Min-Max Criterion to the Optimal Design of a Damped Dynamic Vibration Absorber
,” J. Sound Vib.
, 217
(4
), pp. 757
–765
.10.1006/jsvi.1998.18056.
Zuo
, L.
, and Nayfeh
, S. A.
, 2004
, “Minimax Optimization of Multi-Degree-of-Freedom Tuned-Mass Dampers
,” J. Sound Vib.
, 272
(3–5
), pp. 893
–908
.10.1016/S0022-460X(03)00500-57.
Brown
, B.
, and Singh
, T.
, 2011
, “Minimax Design of Vibration Absorbers for Linear Damped Systems
,” J. Sound Vib.
, 330
(11), pp. 2437
–2448
.10.1016/j.jsv.2010.12.0028.
Sinha
, A.
, 2007
, Linear Systems: Optimal and Robust Control
, CRC Press
, Boca Raton.9.
Nishihara
, O.
, and Asami
, T.
, 2002
, “Closed-Form Solutions to the Exact Optimizations of Dynamic Vibration Absorbers (Minimization of the Maximum Amplitude Magnification Factors)
,” ASME J. Vib. Acoust.
, 124
(4
), pp. 576
–582
.10.1115/1.150033510.
Asami
, T.
, and Nishihara
, O.
, 2003
, “Closed-Form Exact Solution to Optimization of Dynamic Vibration Absorbers (Application to Different Transfer Functions and Damping Systems)
,” ASME J. Vib. Acoust.
, 125
(3
), pp. 398
–405
.10.1115/1.156951411.
Cheung
, Y. L.
, and Wong
, W. O.
, 2011
, “H-Infinity Optimization of a Variant Design of the Dynamic Vibration Absorber—Revisited and New Results
,” J. Sound Vib.
, 330
(16
), pp. 3901
–3912
.10.1016/j.jsv.2011.03.02712.
Korenev
, B. G.
, and Reznikov
, L. M.
, 1993
, Dynamic Vibration Absorbers: Theory and Technical Applications
, Wiley
, New York, pp. 32
–38
.13.
Kuo
, B. C.
, 2000
, Automatic Control Systems
, Prentice-Hall
, Englewood Cliffs, NJ.Copyright © 2015 by ASME
You do not currently have access to this content.