Due to low frequency resolution for closely spaced spectral components, i.e., the instantaneous frequencies (IFs) lie within an octave or even have intersections, the Hilbert–Huang transform (HHT) fails to separate such signals and consequently generates inaccurate time–frequency distribution (TFD). In this paper, a transform operator pair assisted HHT is proposed to improve the capability of the HHT to separate signals, especially those with IF intersections. The two operators of a pair are constructed to remove the chosen component that is clearly observed in the TFD of the signal, and then recover it from intrinsic mode functions (IMFs). With this approach, the components can be clearly separated and the intersections can also be identified in the TFD. Since a priori knowledge of the transform operator is usually not available in real applications, an iterative algorithm is presented to obtain a global transform operator. The effectiveness of the proposed algorithm is demonstrated by analysis of numerical signals and a real signal collected from a cracked rotor–bearing system during the start-up process. Moreover, the proposed approach is shown to be superior to the normalized Hilbert transform (NHT) as well as the ensemble empirical mode decomposition (EEMD).

References

References
1.
Huang
,
N. E.
,
Shen
,
Z.
, and
Long
,
S. R.
,
1998
, “
The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
454
(1971), pp.
903
995
.
2.
Huang
,
N. E.
,
Shen
,
Z.
, and
Long
,
S. R.
,
1999
, “
A New View of Nonlinear Water Waves: The Hilbert Spectrum
,”
Annu. Rev. Fluid Mech.
,
31
(
1
), pp.
417
457
.
3.
Wu
,
Z. H.
, and
Huang
,
N. E.
,
2004
, “
A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
460
(2046), pp.
1597
1611
.
4.
Yuan
,
J.
,
He
,
Z. J.
,
Ni
,
J.
,
Brzezinski
,
A. J.
, and
Zi
,
Y. Y.
,
2013
, “
Ensemble Noise-Reconstructed Empirical Mode Decomposition for Mechanical Fault Detection
,”
ASME J. Vib. Acoust.
,
135
(2), p.
021011
.
5.
Peng
,
Z. K.
,
Tse
,
P. W.
, and
Chu
,
F. L.
,
2005
, “
An Improved Hilbert–Huang Transform and Its Application in Vibration Signal Analysis
,”
J. Sound Vib
,
286
(1–2), pp.
187
205
.
6.
Wang
,
Y. X.
,
He
,
Z. J.
, and
Zi
,
Y. Y.
,
2013
, “
A Comparative Study on the Local Mean Decomposition and Empirical Mode Decomposition and Their Applications to Rotating Machinery Health Diagnosis
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021010
.
7.
He
,
Q. B.
,
Li
,
P.
, and
Kong
,
F. R.
,
2012
, “
Rolling Bearing Localized Defect Evaluation by Multiscale Signature Via Empirical Mode Decomposition
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
061013
.
8.
Yuan
,
J.
,
He
,
Z.
,
Ni
,
J.
,
Brzezinski
,
A. J.
, and
Zi
,
Y.
,
2013
, “
Ensemble Noise-Reconstructed Empirical Mode Decomposition for Mechanical Fault Detection
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
021011
.
9.
Rilling
,
G.
, and
Flandrin
,
P.
,
2008
, “
One or Two Frequencies? The Empirical Mode Decomposition Answers
,”
IEEE Trans. Signal Process.
,
56
(
1
), pp.
85
95
.
10.
Feldman
,
M.
,
2009
, “
Analytical Basics of the EMD: Two Harmonics Decomposition
,”
Mech. Syst. Signal Process.
,
23
(
7
), pp.
2059
2071
.
11.
Feng
,
Z. P.
,
Liang
,
M.
, and
Chu
,
F. L.
,
2013
, “
Recent Advances in Time-Frequency Analysis Methods for Machinery Fault Diagnosis: A Review With Application Examples
,”
Mech. Syst. Signal Process.
,
38
(
1
), pp.
165
205
.
12.
Rilling
,
G.
,
2007
, “
Empirical Modal Decomposition: Contributions to the Theory, Algorithms and Performance Analysis
,” Ph.D. dissertation, Laboratory of Physics, Ecole Normale Superieure de Lyon, Lyon, France.
13.
Deering
,
R.
, and
Kaiser
,
J.
,
2005
, “
The Use of Masking Signal to Improve Empirical Mode Decomposition
,”
IEEE International Conference on Acoustics, Speech, and Signal Processing
(
ICASSP '05
), Philadelphia, PA, Mar. 18–23, Vol.
4
, pp.
485
488
.
14.
Senroy
,
N.
,
Suryanarayanan
,
S.
, and
Ribeiro
,
P. F.
,
2007
, “
An Improved Hilbert-Huang Method for Analysis of Time-Varying Waveforms in Power Quality
,”
IEEE Trans. Power Syst.
,
22
(
4
), pp.
1843
1850
.
15.
Senroy
,
N.
, and
Suryanarayanan
,
S.
,
2007
, “
Two Techniques to Enhance Empirical Mode Decomposition for Power Quality Applications
,”
IEEE Power and Energy Society General Meeting
, Tampa, FL, June 24–28.
16.
Xu
,
G. L.
,
Wang
,
X. T.
, and
Xu
,
X. G.
,
2009
, “
Time-Varying Frequency-Shifting Signal-Assisted Empirical Mode Decomposition Method for AM–FM Signals
,”
Mech. Syst. Signal Process.
,
23
(
8
), pp.
2458
2469
.
17.
Xu
,
G. L.
,
Wang
,
X. T.
,
Xu
,
X. G.
, and
Zhou
,
L. J.
,
2012
, “
Improved EMD for the Analysis of FM Signals
,”
Mech. Syst. Signal Process.
,
33
(
11
), pp.
181
196
.
18.
Feng
,
Z.
,
Chu
,
F.
, and
Zuo
,
M. J.
,
2011
, “
Time-Frequency Analysis of Time-Varying Modulated Signals Based on Improved Energy Separation by Iterative Generalized Demodulation
,”
J. Sound Vib.
,
330
(6), pp.
1225
1243
.
19.
Huang
,
N. E.
,
Wu
,
Z.
,
Long
,
S. R.
,
Arnold
,
K. C.
,
Chen
,
X.
, and
Blank
,
K.
,
2009
, “
On the Instantaneous Frequency
,”
Adv. Adapt. Data Anal.
,
1
(
2
), pp.
177
229
.
20.
Wu
,
Z. H.
, and
Huang
,
N. E.
,
2009
, “
Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method
,”
Adv. Adapt. Data Anal.
,
1
(
1
), pp.
1
41
.
21.
Guo
,
D.
, and
Peng
,
Z. K.
,
2007
, “
Vibration Analysis of a Cracked Rotor Using Hilbert–Huang Transform
,”
Mech. Syst. Signal Process.
,
21
(8), pp.
3030
3041
.
22.
Ma
,
H.
,
Yu
,
T.
,
Han
,
Q.
,
Zhang
,
Y.
,
Wen
,
B.
, and
Chen
,
X.
,
2009
, “
Time–Frequency Features of Two Types of Coupled Rub-Impact Faults in Rotor Systems
,”
J. Sound Vib.
,
321
(3–5), pp.
1109
1128
.
23.
Carson
,
J.
, and
Fry
,
T.
,
1937
, “
Variable Frequency Electric Circuit Theory With Application to the Theory of Frequency Modulation
,”
Bell Syst. Tech. J.
,
16
(
4
), pp.
513
540
.
24.
Feldman
,
M.
,
2011
, “
Hilbert Transform in Vibration Analysis
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
735
802
.
25.
Schreier
,
P. J.
, and
Scharf
,
L. L.
,
2010
,
Statistical Signal Processing of Complex-Valued Data: The Theory of Improper and Noncircular Signals
,
Cambridge University Press
,
Cambridge, UK
.
26.
Shin
,
K.
, and
Hammond
,
J.
,
2008
,
Fundamentals of Signal Processing for Sound and Vibration Engineers
,
Wiley
,
New York
.
27.
Boashash
,
B.
,
1992
, “
Estimating and Interpreting the Instantaneous Frequency—Part 1: Fundamentals
,”
Proc. IEEE
,
80
(
4
), pp.
520
538
.
28.
Feldman
,
M.
,
2008
, “
Theoretical Analysis and Comparison of the Hilbert Transform Decomposition Methods
,”
Mech. Syst. Signal Proc.
,
22
(
3
), pp.
509
519
.
29.
Feldman
,
M.
,
2011
,
Hilbert Transform Applications in Mechanical Vibration
,
Wiley
,
New York
.
30.
Qin
,
Y.
,
Qin
,
S.
, and
Mao
,
Y.
,
2008
, “
Research on Iterated Hilbert Transform and Its Application in Mechanical Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
22
(
8
), pp.
1967
1980
.
31.
Feldman
,
M.
,
2006
, “
Time-Varying Vibration Decomposition and Analysis Based on the Hilbert Transform
,”
J. Sound Vib.
,
295
(
3–5
), pp.
518
530
32.
Feldman
,
M.
,
2007
, “
Considering High Harmonics for Identification of Nonlinear Systems by Hilbert Transform
,”
Mech. Syst. Signal Process.
,
21
(
2
), pp.
943
958
.
33.
Peng
,
Z. K.
,
Meng
,
G.
,
Chu
,
F. L.
,
Lang
,
Z. Q.
,
Zhang
,
W. M.
, and
Yang
,
Y.
,
2011
, “
Polynomial Chirplet Transform With Application to Instantaneous Frequency Estimation
,”
IEEE Trans. Instrum. Meas.
,
60
(
9
), pp.
3222
3229
.
34.
Yan
,
R. Q.
, and
Gao
,
R. X.
,
2008
, “
Rotary Machine Health Diagnosis Based on Empirical Mode Decomposition
,”
ASME J. Vib. Acoust.
,
130
(2), p.
021007
.
35.
Feng
,
Z. P.
,
Zuo
,
M. J.
,
Hap
,
R. J.
,
Chu
,
F. L.
, and
Lee
,
J.
,
2013
, “
Ensemble Empirical Mode Decomposition-Based Teager Energy Spectrum for Bearing Fault Diagnosis
,”
ASME J. Vib. Acoust.
,
135
(3), p.
031013
.
You do not currently have access to this content.