This paper investigates a horizontal diamagnetic levitation (HDL) system for vibration energy harvesting in contrast to the vertical diamagnetic levitation (VDL) system recently proposed by Wang et al. (2013, “A Magnetically Levitated Vibration Energy Harvester,” Smart Mater. Struct., 22(5), p. 055016). In this configuration, two large magnets, alias lifting magnets (LMs), are arranged co-axially at a distance such that in between them a magnet, alias floating magnet (FM), is passively levitated at a laterally offset equilibrium position. The levitation is stabilized in the horizontal direction by two diamagnetic plates (DPs) made of pyrolytic graphite placed on each side of the FM. This HDL configuration mitigates the limitation on the amplitude of the FM imposed in the VDL configuration and exploits the ability to tailor the geometry to meet specific applications due to its frequency tuning capability. A simple circular coil geometry is designed to replace a portion of the pyrolytic graphite plate without sacrificing the stability of the levitation for transduction. An experimental setup exhibits a weak softening frequency response and validates the theoretical findings; at an input root mean square (RMS) acceleration of 0.0434 m/s2 and at a resonant frequency of 1.2 Hz, the prototype generated a RMS power of 3.6 μW with an average system efficiency of 1.93%.

References

References
1.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
,
17
(
12
), p.
R175
.10.1088/0957-0233/17/12/R01
2.
Arnold
,
D. P.
,
2007
, “
Review of Microscale Magnetic Power Generation
,”
IEEE Trans. Magn.
,
43
(
11
), pp.
3940
3951
.10.1109/TMAG.2007.906150
3.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
(
3
), p.
R1
.10.1088/0964-1726/16/3/R01
4.
Szarka
,
G. D.
,
Stark
,
B. H.
, and
Burrow
,
S. G.
,
2012
, “
Review of Power Conditioning for Kinetic Energy Harvesting Systems
,”
IEEE Trans. Power Electron.
,
27
(
2
), pp.
803
815
.10.1109/TPEL.2011.2161675
5.
Green
,
P. L.
,
Papatheou
,
E.
, and
Sims
,
N. D.
,
2013
, “
Energy Harvesting From Human Motion and Bridge Vibrations: An Evaluation of Current Nonlinear Energy Harvesting Solutions
,”
J. Intell. Mater. Syst. Struct.
,
24
(
12
), pp.
1494
1505
.10.1177/1045389X12473379
6.
Kulah
,
H.
, and
Najafi
,
K.
,
2004
, “
An Electromagnetic Micro Power Generator for Low-Frequency Environmental Vibrations
,”
17th IEEE International Conference on Micro Electro Mechanical Systems
(
MEMS
),
Maastricht, The Netherlands
, Jan. 25–29, pp.
237
240
.10.1109/MEMS.2004.1290566
7.
Kuelah
,
H.
, and
Najafi
,
K.
,
2008
, “
Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications
,”
IEEE Sens. J.
,
8
(
3–4
), pp.
261
268
.10.1109/JSEN.2008.917125
8.
Galchev
,
T.
,
Kim
,
H.
, and
Najafi
,
K.
,
2011
, “
Micro Power Generator for Harvesting Low-Frequency and Nonperiodic Vibrations
,”
J. Microelectromech. Syst.
,
20
(
4
), pp.
852
866
.10.1109/JMEMS.2011.2160045
9.
Ashraf
,
K.
,
Khir
,
M. H. M.
, and
Dennis
,
J. O.
,
2013
, “
Improved Energy Harvesting From Low Frequency Vibrations by Resonance Amplification at Multiple Frequencies
,”
Sens. Actuators
, A,
195
, pp.
123
132
.10.1016/j.sna.2013.03.026
10.
Mann
,
B. P.
, and
Sims
,
N. D.
,
2009
, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
(
1–2
), pp.
515
530
.10.1016/j.jsv.2008.06.011
11.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
,
102
(
8
), p.
080601
.10.1103/PhysRevLett.102.080601
12.
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D. J.
,
2009
, “
A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
(
25
), p.
254102
.10.1063/1.3159815
13.
Gu
,
L.
, and
Livermore
,
C.
,
2011
, “
Impact-Driven, Frequency Up-Converting Coupled Vibration Energy Harvesting Device for Low Frequency Operation
,”
Smart Mater. Struct.
,
20
(
4
), p.
045004
.10.1088/0964-1726/20/4/045004
14.
Jung
,
S.
, and
Yun
,
K.
,
2010
, “
Energy-Harvesting Device With Mechanical Frequency-Up Conversion Mechanism for Increased Power Efficiency and Wideband Operation
,”
Appl. Phys. Lett.
,
96
(
11
), p.
111906
.10.1063/1.3360219
15.
Daqaq
,
M. F.
,
2010
, “
Response of Uni-Modal Duffing-Type Harvesters to Random Forced Excitations
,”
J. Sound Vib.
,
329
(
18
), pp.
3621
3631
.10.1016/j.jsv.2010.04.002
16.
Daqaq
,
M. F.
,
Masana
,
R.
, and
Erturk
,
A.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.10.1115/1.4026278
17.
Liu
,
L.
, and
Yuan
,
F. G.
,
2011
, “
Nonlinear Vibration Energy Harvester Using Diamagnetic Levitation
,”
Appl. Phys. Lett.
,
98
(
20
), p.
203507
.10.1063/1.3583675
18.
Wang
,
X. Y.
,
Palagummi
,
S.
, and
Liu
,
L.
,
2013
, “
A Magnetically Levitated Vibration Energy Harvester
,”
Smart Mater. Struct.
,
22
(
5
), p.
055016
.10.1088/0964-1726/22/5/055016
19.
Simon
,
M. D.
,
Heflinger
,
L. O.
, and
Geim
,
A. K.
,
2001
, “
Diamagnetically Stabilized Magnet Levitation
,”
Am. J. Phys.
,
69
(
6
), pp.
702
713
.10.1119/1.1375157
20.
Conway
,
J. T.
,
2013
, “
Forces Between Thin Coils With Parallel Axes Using Bessel Functions
,”
IEEE Trans. Magn.
,
49
(
9
), pp.
5028
5034
.10.1109/TMAG.2013.2251652
21.
Derby
,
N.
, and
Olbert
,
S.
,
2010
, “
Cylindrical Magnets and Ideal Solenoids
,”
Am. J. Phys.
,
78
(
3
), pp.
229
235
.10.1119/1.3256157
22.
Roundy
,
S.
, and
Wright
,
P. K.
,
2004
, “
A Piezoelectric Vibration Based Generator for Wireless Electronics
,”
Smart Mater. Struct.
,
13
(
5
), pp.
1131
1142
.10.1088/0964-1726/13/5/018
23.
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
,
18
(
2
), p.
025009
.10.1088/0964-1726/18/2/025009
24.
Wang
,
L.
, and
Yuan
,
F. G.
,
2008
, “
Vibration Energy Harvesting by Magnetostrictive Material
,”
Smart Mater. Struct.
,
17
(
4
), p.
045009
.10.1088/0964-1726/17/4/045009
25.
Beeby
,
S. P.
,
Torah
,
R. N.
, and
Tudor
,
M. J.
,
2007
, “
A Micro Electromagnetic Generator for Vibration Energy Harvesting
,”
J. Micromech. Microeng.
,
17
(
7
), pp.
1257
1265
.10.1088/0960-1317/17/7/007
26.
Lee
,
K.
, and
Park
,
K.
,
2002
, “
Modeling Eddy Currents With Boundary Conditions by Using Coulomb's Law and the Method of Images
,”
IEEE Trans. Magn.
,
38
(
2
), pp.
1333
1340
.10.1109/20.996020
27.
Palagummi
,
S.
, and
Yuan
,
F. G.
,
2015
, “
An Optimal Design of a Mono-Stable Vertical Diamagnetic Levitation Based Electromagnetic Vibration Energy Harvester
,”
J. Sound Vib.
,
342
, pp.
330
345
.10.1016/j.jsv.2014.12.034
28.
Spreemann
,
D.
, and
Manoli
,
Y.
,
2012
,
Electromagnetic Vibration Energy Harvesting Devices: Architectures, Design, Modeling and Optimization
(Springer Series in Advanced Microelectronics),
Springer
,
New York
.
29.
Stephen
,
N. G.
,
2006
, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
,
293
(
1–2
), pp.
409
425
.10.1016/j.jsv.2005.10.003
30.
Galchev
,
T. V.
,
McCullagh
,
J.
, and
Peterson
,
R. L.
,
2011
, “
Harvesting Traffic-Induced Vibrations for Structural Health Monitoring of Bridges
,”
J. Micromech. Microeng.
,
21
(
10
), p.
104005
.10.1088/0960-1317/21/10/104005
31.
Mitcheson
,
P. D.
,
Yeatman
,
E. M.
, and
Rao
,
G. K.
,
2008
, “
Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices
,”
Proc. IEEE
,
96
(
9
), pp.
1457
1486
.10.1109/JPROC.2008.927494
32.
Nguyen
,
D. S.
,
Halvorsen
,
E.
, and
Jensen
,
G. U.
,
2010
, “
Fabrication and Characterization of a Wideband MEMS Energy Harvester Utilizing Nonlinear Springs
,”
J. Micromech. Microeng.
,
20
(
12
), p.
125009
.10.1088/0960-1317/20/12/125009
33.
Nguyen
,
S. D.
, and
Halvorsen
,
E.
,
2011
, “
Nonlinear Springs for Bandwidth-Tolerant Vibration Energy Harvesting
,”
J. Microelectromech. Syst.
,
20
(
6
), pp.
1225
1227
.10.1109/JMEMS.2011.2170824
34.
Ravaud
,
R.
,
Lemarquand
,
G.
, and
Babic
,
S.
,
2010
, “
Cylindrical Magnets and Coils: Fields, Forces, and Inductances
,”
IEEE Trans. Magn.
,
46
(
9
), pp.
3585
3590
.10.1109/TMAG.2010.2049026
You do not currently have access to this content.